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 The occurrence of thrombosis in several pathophysiological conditions creates a 

huge need for anticoagulation therapy.  Thrombin and factor Xa have been prime targets 

for regulation of clotting through the direct and indirect mechanism of inhibition.  

This work investigates chemo-enzymatically prepared oligomers of 4-

hydroxycinnamic acids (DHPs) as potential anticoagulants.  Oligomers were prepared 

through peroxidase-catalyzed oxidative coupling of 4-hydroxycinnamic acids.  The 

products resulting from this reaction are called CDs, FDs and SDs.  Structurally, these 

 xv 
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sulfated DHPs are unique and do not resemble any of the anticoagulants known in the 

literature. 

DHP oligomers were found to increase clotting times at concentrations comparable 

to heparin.  Studies in blood and plasma show that DHPs possess an anticoagulation profile 

similar to enoxaparin.  To understand the mechanism of action of DHPs, we studied the 

inhibition of thrombin, FXa, FIXa, and FVIIa in the presence and absence of antithrombin.  

CDs and FDs display a preference for direct inhibition of thrombin and FXa, and exhibit a 

high level of specificity over FIXa and FVIIa.  In the presence of AT, CDs and FDs 

displayed weaker inhibition of FXa and thrombin suggesting that binding to AT is a 

competitive side reaction.  SDs exhibited potent inhibition of FXa and thrombin in the 

absence of antithrombin, but was inactive against FIXa and FVIIa representing the best 

selectivity among the DHPs.  For SDs, inhibition of all the pro-coagulant enzymes favored 

the antithrombin dependent pathway.   

Binding studies were performed to determine how CDs directly inhibits thrombin.  

Competitive binding studies suggest that CDs interacts with exosite II and disrupts the 

catalytic triad of thrombin. These results indicate that the preferred mechanism of CDs 

action is exosite II mediated allosteric disruption of thrombin. CDs appears to be the first 

exosite II mediated DTI and this represents a novel mechanism of inhibitor function.     

The inhibition characteristics of DHPs are unique and radically different in 

structure from all the current clinically used anticoagulants.  To the best of our knowledge 

this dual mechanism of anticoagulation and unique binding mode has not been described as 

yet in literature and represents a novel strategy that our laboratory has discovered.  
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Chapter 1: Introduction 
 

1.1 Coagulation Cascade 
  

The human body is designed to maintain an intricate network of vasculature that is capable 

of continuously circulating blood for decades.  It is also responsible for its own repair 

when internal or external forces disrupt the integrity of this system.  The major physiologic 

pathway that is responsible for this endogenous repair is the coagulation cascade (Figure 

1).  It is composed of two separate, but likeminded, pathways known as the extrinsic (or 

tissue factor) pathway and the intrinsic (or contact factor) pathway.  The extrinsic pathway 

has the greatest effect on normal and pathologic hemostasis [1].  The extrinsic pathway 

begins when factor VIIa (FVIIa) and tissue factor (TF) coalesce.  TF is the most important 

initiator of coagulation [2].  TF is a transmembrane glycoprotein that is expressed in 

regions of the body where, if disrupted, coagulation would be necessary.  In normal 

vessels, TF is found in the adventia smooth muscle cells of the vessel media [3].  TF is 

expressed on subendothelial cells and is generally barricaded from the blood by the 

endothelial barrier of the vasculature.  The initiation of the extrinsic pathway is triggered 

by the exposure of TF to the blood, indicating a hemorrhagic event has occurred [4].  TF 

exposure can also occur when endotoxins and cytokines stimulate cells to increase TF 

expression, which is common during an inflammatory response or sepsis [5].   

 1 
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 Although segregated from TF, FVIIa is always circulating in the blood at low basal 

levels.  When TF is exposed to the blood, it forms a complex with circulating free FVIIa to 

form a TF/FVIIa complex, which can be considered the initiation of thrombin generation 

[6].  During the initiation phase, the TF/FVIIa complex activates factor X to factor Xa 

(FXa).  Also, the TF/FVIIa complex activates more FVII.  Complexation with TF greatly 

enhances the activity of FVIIa [7].  The earliest FXa formed is free FXa, which activates a 

small amount of prothrombin to thrombin, which in turn activates a small number of 

platelets.  FXa first cleaves the peptide bond immediately following Arg320 in 

prothrombin generating meizothrombin. Next, the peptide bond immediately following 

Arg271 is cleaved by FXa to generate thrombin and prothrombin fragment 1.2 [8].  The 

activity of the TF/FVIIa complex is also referred to as the extrinsic pathway. 

 After clotting has been initiated by the exposure of TF, large amounts of fibrin and 

activated platelets are needed to stop the hemorrhage.  In a very short time, high 

concentrations of thrombin are necessary for the production of fibrin and activated 

platelets.  The series of biochemical events that ultimately lead to the mass production of 

thrombin is known as the amplification phase.  During the amplification phase, thrombin 

continues to activate platelets [9] as well as FVIII [10], FV [11] and FXI [12].  FIX is 

activated by FXIa which allows for the formation of the intrinsic tenase complex which is 

composed of FIXa, FVIIIa, anionic phospholipids and Ca+2.   The intrinsic tenase complex 

activates FX which can now form its own complex, know as the prothrombinase complex.  

This prothrombinase complex is composed of FXa, FVa, phospholipids and Ca+2.   The 

prothrombinase complex generates thrombin over 100,000 times faster than free FXa, so it 
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is this complex formation that results in an explosion of thrombin [13].  At the beginning 

of the intrinsic pathway, factor XIIa can activate FXI to FXIa.  FXIa in turn activates FIX, 

which binds with the catalytically inactive FVIIIa.  FIXa and FVIIIa cooperate to activate 

FX to FXa.  Factor Xa represents the confluence of the two kindred pathways (extrinsic 

and intrinsic) and forms the beginning of the common pathway in the coagulation cascade.   

FXa activates prothrombin to thrombin.  Small amounts of thrombin feeds back to activate 

FVII to FVIIa.  FVIIa activates FX to FXa.  FXa activates more prothrombin to thrombin.  

This is a positive feedback system whereby thrombin is capable of amplifying its own 

creation, ultimately leading to an explosion in thrombin levels and subsequently, the rapid 

development of a clot.  To create a clot, thrombin converts fibrinogen to fibrin and FXIII 

to FXIIIa.  The proteolytic production of fibrin from fibrinogen allows for the non-

covalent self-association of the fibrin monomers [14].  FXIIIa is a transglutaminase that 

covalently links the Gln and Lys residues of the growing non-covalent fibrin polymer [15].  

This creates a strong fibrin polymer that affords structural integrity to the clot.   

 During thrombogenesis, clotting factors become ensnared in the growing fibrin 

meshwork and become bound to fibrin.  These clot-bound procoagulant proteases include 

thrombin, FXa, prothrombinase complex and likely other procoagulant elements.  The clot 

bound factors continue to remain active, making them important for thrombogenicity and 

the evolution of clot maturation [16, 17].  These clot bound factors can not be accessed by 

AT and are therefore resistant to AT-dependent drugs [18, 19]. 

Another example of this positive feed back system occurs when thrombin activates 

FXI [12].  FXIa activates FIX and FIXa complexes with FVIIIa to activate FX which 
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ultimately results in a further increase in thrombin concentration.  In this light, it is also 

possible to think of the intrinsic pathway, not as a separate pathway, but as another avenue 

to amplify the extrinsic pathway.     

 

Figure 1.  The coagulation cascade.  Green arrows and blue arrows, indicate the processes 

of the intrinsic and extrinsic pathways, respectively.  The dotted red lines are reactions 

catalyzed by thrombin.  Factors inhibited by antithrombin are shown by the black arrows. 

 

 

 Although the goal of the coagulation cascade is to form a stable clot and seal off 

the area of hemorrhage, there needs to exist an internal adversary which is capable of 

regulating the clotting process.  Within our bodies, there are several naturally occurring 
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anticoagulants that serve to regulate the procoagulant enzymes of the blood.  The three 

major endogenous anticoagulants are antithrombin III (AT), activated protein C (APC) and 

tissue factor pathway inhibitor (TFPI) [20].  These endogenous inhibitors have several 

different mechanisms to restrain hypercoagulation or regulate accelerated clot formation.  

Tissue factor pathway inhibitor (TFPI) inhibits the TF/FVIIa/FXa complex [21].  

Antithrombin is a suicide inhibitor that regulates thrombin, FXa, FIXa and to lesser degree 

FVIIa and FXIa [21].  AT inhibition of these factors is greatly accelerated by the presence 

of heparin.  Paradoxically, thrombin, the most important procoagulant enzyme also 

behaves as an anticoagulant by interacting with thrombomodulin to activate protein C, 

which in turn inhibits FVa and FVIIIa.  While, AT and APC begin to inhibit their targets 

while the coagulation response is in the process of amplifying, TFPI inhibits the 

coagulation response during the earliest steps of coagulation [22].   

 Although the two systems are antagonistic, coagulation and fibrinolysis both share 

a common associate.  Thrombin is able to activate thrombin-activated fibrinolysis inhibitor 

(TAFI) [23].  TAFIa removes the C-terminal K and R residues from partially degraded 

fibrin [24].  Fibrin containing these residues is a necessary cofactor for plasminogen 

activation and plasmin is a key enzyme is clot catabolism.  This allows TAFIa to inhibit 

fibrinolysis and further extend the influence of thrombin as a procoagulant enzyme.  

Inhibition of thrombin generation can reduce TAFI activation and reduce resistance to 

fibrinolysis.   
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1.2 Current Anticoagulants 

For decades, drug design of anticoagulants has focused on the two most prominent serine 

proteases of the coagulation cascade, thrombin and FXa [25].   The mechanism of action 

for these anticoagulants has relied on both direct inhibition of the enzymes as well as 

indirect inhibition utilizing the endogenous anticoagulant systems or disrupting metabolic 

pathways. Direct inhibitors bind to the enzyme and disrupt its catalytic ability by occluding 

the active site or through allosteric modulation.  Indirect inhibitors do not bind to 

procoagulant enzymes but their interaction with other proteins ultimately yields an 

anticoagulant effect.  Common anticoagulants, like warfarin or heparin and its derivatives 

are indirect inhibitors which work through a conduit, such as vitamin K or antithrombin, 

respectively.  These inhibitors are mentioned briefly below, while direct inhibitors are 

discussed more thoroughly. 

 

1.2.1 Warfarin is a vitamin K antagonist (figure 2).  Warfarin is capable of inhibiting the 

enzyme vitamin K epoxide reductase, which prevents the production of reduced vitamin K, 

a necessary cofactor for the action of γ-carboxylase.  The function of γ-carboxylase is to 

add carboxyl groups to glutamic acid residues in thrombin, FXa, FIXa and FVIIa.  Without 

proper γ-carboxylation, calcium can not bind to the serine proteases, thereby disrupting the 

pro-coagulant reactions.  γ-carboxylase utilizes vitamin K as a reducing cofactor, which in 

turn is oxidized to vitamin K epoxide.  Vitamin K epoxide reductase converts the oxidized 

vitamin K back to its useful, reduced state.  Therefore, warfarin is indirectly able to act as 
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an anticoagulant by depleting vitamin K, resulting in decreased γ-carboxylase activity, 

which in turn produces catalytically inactive pro-coagulant serine proteases [26].   

 

Figure 2.  The structure of Warfarin. 
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1.2.3 Heparin and low molecular weight derivatives are popular anticoagulants because 

they are effective and easily accessible (figure 3). Heparin is isolated from mammalian 

sources, most commonly from porcine intestine.  Structurally, heparin is composed of 

glucosamine and iduronic acid residues that are connected in a 1- 4 linkage, which creates 

a linear polymer [27].  Despite the simplistic primary structure of heparin, it is a highly 

sulfated complex, heterogeneous, polydisperse molecule.  Thus, a heparin preparation has 

numerous fragments with different structures that range in size from 3-50 kDa.   Within 

these sequences is a specific sequence motif referred to as the antithrombin 

pentasaccharide sequence.  It is this sequence that gives heparin its anticoagulant activity 

[28]. 
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Figure 3.  The general structure of heparin. 
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 The large sulfated polymers create a high negative charge density along the heparin 

molecule.  In addition to binding antithrombin, this polyanionic polymer is capable of 

nonspecifically binding to a large number of plasma proteins, which is a putative cause for 

many of heparin’s undesirable side effects as well as its most common mechanism of 

action [29].   

 The raw preparations taken directly from porcine sources are considered to be 

unfractionated heparin (UFH).  UFH has variable pharmacokinetics and numerous 

undesirable side effects.  To combat these problems, low molecular weight heparins 

(LMWHs) were produced by filtering out some of the higher molecular weight species in 

an attempt to better concentrate the active pentasaccharide sequence.  This results in a drug 

that has less side effects and more predictable pharmacokinetics.  UFH and LMWHs bind 

to antithrombin via their specific pentasaccharide sequence and accelerates antithrombin’s 

inhibition of thrombin and FXa.  The mechanism of inhibition is slightly different for each 

serine protease.  UFH/LMWH binds to antithrombin and changes its conformation, which 

accelerates its rate of FXa inhibition (figure 4).  To inhibit thrombin, an additional step is 
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required.  Following change in antithrombin conformation, heparin utilizes its long, 

polyanionic chain to bind thrombin and bring it into close association with antithrombin.  

This is referred to as the bridging mechanism of heparin.  If the heparin fragment is too 

short, then the bridging mechanism will not proceed [30].  Factor IXa is inhibited by 

heparin utilizing both the bridging mechanism and the conformational change mechanism. 

 

Figure 4.  The mechanism of inhibition of procoagulant serine proteases by heparin.   
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1.2.4 Fondaparinux is a synthetically prepared analogue of the highly specific 

pentasaccharide found in heparin (figure 5).  Fondaparinux binds to antithrombin, an 

endogenous regulator of procoagulant serine proteases, and accelerates its inhibition of 

FXa [31].  Since fondaparinux is short compared to unfractionated and low molecular 

weight heparin and can not bridge thrombin and antithrombin, it is unable to inhibit 
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thrombin effectively.  Just like its predecessors, fondaparinux is parenterally administered 

and can not inhibit clot bound or platelet bound FXa.  However, it also does not bind 

platelet factor 4 (PF4).  This is significant because the heparin:PF4 complex is potentially 

antigenic and is the epitope for the production of auto-antibodies which cause heparin-

induced thrombocytopenia.  Unfortunately, fondaparinux is not susceptible to the 

protamine sulfate antidote like larger heparins [21]. 

   

Figure 5.  The structure of the pentasaccharide binding sequence.   
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fibrinogen binding domain (exosite I), while its bulky, amino-terminal region binds in the 

active site of thrombin [34] (figures 7, 8 and 9).  This type of binding is known as bivalent 

direct inhibition.  Although the binding is strictly noncovalent, the complex is so tight (Ki= 

20 fM) that it is practically irreversible.  The thrombin Ki values for lepirudin and 

desirudin are 60 fM and 200 fM, respectively [35, 36].  This ultra tight binding is 

unfortunate because no antidote can be given to reverse thrombin inhibition.  Hirudin is 

highly selective for thrombin over other serine proteases (109-fold more selective) [33, 35].  

Several derivatives of this peptide have been produced and are now obtainable for clinical 

applications [37].  Since hirudin is a large polypeptide, and therefore not orally available, a 

great deal of energy is being put forth to develop an orally bioavailable direct thrombin 

inhibitor. These small molecules are being synthesized as prodrugs that target the thrombin 

active site.  Furthermore, hirudin has been shown to be as or more effective than heparin in 

various indications, especially the treatment of deep vein thrombosis (DVT).  However, it 

has a narrow therapeutic window, carries a significant bleeding risk and can cause 

anaphylaxis [21, 38].  Major bleeding has been observed in 18-20% of patients receiving 

lepirudin, with a 2.5% risk of hemorrhagic death [38].  Since the hirudins are foreign 

peptides, they are highly immunogenic, resulting in potentially life threatening anaphylaxis 

[38]. 

 

Figure 6.  The primary sequence of a naturally occurring hirudin.  Recombinant hirudins 

do not contain a sulfate at Tyr63.  Residues in red (E49-Q65) consist of the C-terminal 

exosite I recognition sequence, while the first three residues in blue bind in the thrombin 
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active site.  The black lines connecting Cys residues denote disulfide bonds. This figure is 

adapted from [39].   
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Figure 7.  An illustration of thrombin (left), which includes are the active site as well as 

the substrate recognition sites (exosites) and Na+ binding site.  The second illustration 

(right) shows hirudin interacting with exosite I and the active site of thrombin. 
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Figure 8.  This is a ribbon structure of the thrombin (light blue), hirudin (red) complex.  

The N-terminus of hirudin occludes the active site and the C-terminus stretches along 

exosite I of thrombin.  This image was created from the PDB file 4HTC using sybyl 7.2.   
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Figure 9.  This is a mixed rendering of the thrombin (space filled model), hirudin (green) 

complex.  The N-terminus of hirudin occludes the active site and the C-terminus stretches 

along exosite I of thrombin.  This image was created from the PDB file 4HTC using sybyl 

7.2.   

 

 

 

 

 



www.manaraa.com

15 

1.2.6 Bivalirudin is a synthetic, 20-amino acid (2180 Da) analog of hirudin (generically 

referred to as a hirulog), which is a potent reversible inhibitor of thrombin [40].  

Structurally, bivalirudin (and hirulogs) can be considered a “bare bones” version of hirudin 

with only most important residues retained for activity (figure 10).  The N-terminus 

contains the sequence, D-Phe-Pro-Arg-Pro, which binds in the active site of thrombin.  The 

C-terminus is a dodecapeptide that binds thrombin exosite I.  These two sequences are 

connected by a four glycine linker to one another (figure 11) [41].  It forms a 1:1 complex 

with thrombin but the Pro-Arg bond that binds the active site is cleaved allowing thrombin 

to regenerate its activity [42].  Initially, bivalirudin exhibits irreversible thrombin binding, 

but eventually bivalirudin begins to exhibit reversible thrombin binding kinetics (kcat= 

0.01/sec) [43]. Bivalirudin (or hirulog-1) inhibits small chromogenic peptide hydrolysis by 

thrombin with a Ki= 1.9-2.3 nM [40, 43].  The C-terminal portion of bivalirudin alone 

inhibits the fibrinogen clotting activity of thrombin with a Ki= 144 nM but it can not 

inhibit thrombin hydrolysis of small peptides.  Bivalirudin, like hirudin, is specific for 

thrombin over other serine proteases including FXa, plasmin and trypsin.  Bivalirudin is 

twice as potent as hirudin in increasing APTT in human plasma [40].    Since bivalirudin 

has a 25 minute half-life [44] and a predictable anticoagulant response, it is considered to 

be as good or superior to heparin in certain surgical procedures while carrying a decreased 

bleeding risk [21].  Unlike hirudin, bivalirudin is not considered immunogenic [38].   
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Figure 10.  The primary sequence of bivalirudin.  The exosite I recognition sequence is 

shown in red, which is connected to the active site recognition sequence in blue by a four 

Gly linker.   
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Figure 11.  An illustration of thrombin bound to bivalirudin.  The exosite I recognition 

sequence is connected to the active site recognition sequence by a four Gly linker.   
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1.2.7 Argatroban (1) is a reversible, competitive active site directed thrombin inhibitor 

(figure 12) [45].  It has a molecular mass of 527 Da and displays good selectivity and 

potency for thrombin (Ki= 38 nM) [37].  Although argatroban is approved for use in 

patients with heparin-induced thrombocytopenia (HIT), or patients believed to be at high 

risk for developing HIT, its usefulness is limited by a short plasma half-life and its 

parenteral route of administration.  Argatroban lacks oral bioavailability due to its 

guanidine moiety which is positively charged under physiological conditions.  

Additionally, argatroban is not antigenic [46] and it is able to inhibit clot bound thrombin 

[47].     
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Ximelagatran (2) represents the first orally active direct thrombin inhibitor which was 

approved for the treatment of venous thromboembolic diseases.  Ximelagatran is a prodrug 

of the active compound melagtran.  The prodrug is created by the amidoxime group and an 

ester [48].  Ximelagatran transforms to melagatran via two intermediate metabolites which 

involves ester hydrolysis and reduction of the hydroxyl group [49].  The conversion can 

occur in two ways.  There can either be a reduction of hydroxyamidine to ethylmelagatran 
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followed by hydrolysis or hydrolysis to hydroxymelagatran and then reduction to 

melagatran [50].  Ximelagatran has greatly increased lipophilic character over melagatran 

and it remains uncharged in the gastrointestinal tract [48].  Both these factors contribute to 

ximelagatran’s superior permeability (80-fold) and oral absorption [51].  Melagatran is a 

peptide mimic of part of fibrinopeptide, specifically; it mimics the D-Phe-Pro-Arg 

sequence [52].  It has a benzamidine in place of Arg, Pro is mimicked by azetidine 2-

carboxylic acid and the Phe is replaced by cyclohexylglycine.  Based on this design, 

melagatran is an active site inhibitor of thrombin (figure 12) and it is capable of inhibiting 

both free thrombin and fibrin bound thrombin [53].  Melagatran has a molecular weight of 

429 Da [37].  While ximelagatran and hydroxyamidine melagatran are devoid of 

anticoagulant activity, ethyl melagatran is considered to possess similar anticoagulant 

activity to melagatran [51].    It can not be considered selective because its Ki against 

thrombin is 3 nM, while its Ki is 4 nM against trypsin.  However, selectivity is achieved 

over the other serine proteases [49].  In Europe, ximelagatran (Exanta®) was approved for 

preventing thrombosis in orthopedic surgical patients.  Although ximelagatran does not 

have any known drug-drug or drug-food interactions like warfarin, liver toxicity is a major 

safety issue [54] and unfortunately, this has prevented its wide spread use.  The FDA 

rejected Exanta® in 2004 citing concerns over hepatotoxicity in some patients [37] and 

this concern ultimately killed its future as a drug.    Using ximelagatran as a lead, 

AZD0837 (3) was created as an orally bioavailable, active site mediated, thrombin 

inhibitor [55].  
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Figure 12.  An illustration of synthetic small molecules interacting with the thrombin 

active site.  Note that peripheral exosites are not involved in mediating enzyme-inhibitor 

interactions.   
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1.3 Major limitations of current anticoagulants 

Although indirect inhibitors are commonly used in anticoagulant therapy, they suffer from 

several limitations including enhanced chance of bleeding, variable patient responses, 

heparin-induced thrombocytopenia (HIT) and the inability to inhibit clot bound thrombin 

[18, 19, 56].  Because of these limitations, newer direct inhibitors of thrombin and factor 

Xa are considered to be a superior alternative to indirect inhibitors.  An important 

advantage of direct inhibition is that both circulating and clot-bound thrombin can be 

inhibited [47]. During thrombogenesis, clotting factors become ensnared in the growing 

fibrin meshwork and become bound to fibrin.  These clot-bound procoagulant proteases 

include thrombin, FXa, prothrombinase complex and likely other procoagulant elements.  

Clot bound factors are important for thrombogenicity and the evolution of clot maturation 

[16, 17].  These clot bound factors can not be accessed by AT and therefore are resistant to 

AT-dependent drugs [18, 19].  Some currently approved therapies, like hirudin, its 

derivatives and argatroban are not orally bioavailable and have short durations of action.  

The first orally active anticoagulant since warfarin, ximelagatran, was never approved and 

ultimately discontinued because of liver toxicity.   

 

1.4 Challenges in designing inhibitors of coagulation 

Development of these molecules has been challenging including difficulties establishing 

enzyme binding affinity that is not associated with excessive bleeding, achieving inhibition 

of both free and clot-bound thrombin and avoiding liver toxicity [37].  Furthermore, the 

development of selective compounds, especially compounds that do not also inhibit 
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trypsin, is difficult.  It is also unknown what inhibitor strategy will yield the best 

anticoagulant effects and be hampered the least by side effects.  It may also be the case that 

dual inhibition of the coagulation cascade or poly-pharmacy will end up being the most 

efficacious.  Regardless, these numerous unanswered questions make the field 

anticoagulation drug design extremely exciting, compelling and challenging.   

 

1.5 The trypsin family of serine proteases 

In general, the active sites of this family are composed of a specificity pocket (S1), a 

proximal hydrophobic pocket (S2) and a distal hydrophobic pocket (S3) [57].  Although 

the active sites are similar, there are differences between them that allow for the 

development of specific, potent inhibitors.  All serine protease have the same catalytic triad 

in the S1 pocket, Ser-His-Asp [58].  The active site of trypsin is considered to be more 

open and less sterically restricted then the other proteases [59].  By skillfully designing and 

probing the active sites, one can eventually develop specific, potent inhibitors.   

 

1.6 Inhibitors of initiation of coagulation 

1.6.1 General Mechanism of Action and Rationale for Designing Inhibitors 

These molecules target and inhibit the formation and amplification of the FVIIa/TF 

complex, by inhibiting factor VIIa, TF or the FVIIa/TF complex.  It is believed that 

inhibition of TF/FVIIa complex, instead of thrombin or FXa, will allow for a better 

separation of the desirable antithrombotic effects from the deleterious hemorrhagic side 

effects common to thrombin and FXa inhibition [60].  Since the TF/FVIIa complex is only 
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formed at sites of TF exposure, an inhibitor will only work locally without the global 

complications caused by inhibiting other coagulation enzymes.   

 

1.6.2 FVIIa active site 

The active site of FVIIa is similar to that of other serine proteases but specific differences 

do exist (figures 13 and 14).  The binding of tissue factor radically alters the active site 

geometry into a conformation with superior catalytic potential.  The three pockets of the 

active site are the specificity pocket (S1), the proximal hydrophobic pocket (S2) and the 

distal hydrophobic pocket (S3).  In the S1 pocket, FVIIa differs at 2 positions from the 

other serine proteases.  Residue 190 is a serine in FVIIa while it is an alanine in thrombin 

and FXa [61].  Residue 192 is a Lys while other serine proteases have a Gln and thrombin 

has a unique Glu [59].  In the S2 pocket, FVIIa is the only serine protease with an anionic 

group at residue 60 (Asp) and the pocket is comparatively large and open [59].  The S3 

pocket is considered to be open and hydrophobic.    
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Figure 13.  The structure of FVIIa.  The active site residues are displayed for reference.  

This image was created from the PDB file 1CVW using sybyl 7.2.   
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Figure 14.  The structure of FVIIa active site.  The active site residues and other key 

residues are displayed for reference.  This image was created from the PDB file 1CVW 

using sybyl 7.2. 

 

 

1.6.3 2-Aryl substituted 4H-3, 1-Benzoxazin-4ones: Their mechanism of action is the 

selective acylation of the FVIIa Ser 195 by the benzoxazinone lactone [62].  The two 

factors that affect this mechanism are the electronegative groups present on the 2-aryl ring 

and on the benzoxazinone ring at positions 5, 6, 7 and 8.  Substitutions at these positions 

alter the reactivity of the lactone by changing its polarity.  The best substitution pattern is 

2,6-difluoro on the 2-aryl ring and an electronegative group at positions 5, 6, 7 or 8 of the 

benzoxazinone ring, exemplified by the inhibitor 4.  The IC50 for FX activation by the 



www.manaraa.com

25 

TF/FVIIa complex is 0.82 µM, while the IC50 towards FXa and thrombin is 112 µM and 

>200 µM, respectively.   
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1.6.4 Biarylamide inhibitors:  both inhibitors of this group (5, 6) have a TF/FVIIa IC50= 

12-13 nM and 5 has a FVIIa Ki= 6.4 nM [59].   
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1.6.5 N-(4-Amidinophenyl)-Phenylglycine Derivatives:  The acylsulfonamide derivative 

(7) has a FVIIa Ki= 3 nM.  Less substituted, more streamlined phenylglycine derivatives 

have been synthesized.   The di-carboxylic acid structure shown (8) has a FVIIa Ki = 38.5 

nM [59].   
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1.6.6 Pyrazinone based inhibitors:  Scientists wanted to make highly selective FVIIa 

inhibitor that would be efficacious in vivo but be superior to FXa and thrombin inhibition 

in terms of a decreased risk of bleeding.  The key to making a selective FVIIa inhibitor is 

to engage the Asp60 in the S2 pocket, which is unique to FVIIa [63, 64].  The S2 pocket is 

also more open than that in both thrombin and FXa [63, 64].  The pyrazinone core must 

contain a 3-amino substitution to retain a hydrogen bond with the backbone of G216.  Due 

to the size and the electronics of the S2 pocket of FVIIa vs. thrombin, it is possible to 
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insert an electron donating group on the P2 phenyl ring to increase potency and selectivity.  

The group at the meta position is able to hydrogen bond with the Asp60.  The addition of a 

meta carboxylic acid allows the inhibitor to engage the K192 of FVIIa while 

simultaneously being repelled by the E192 of thrombin.  The final structure (9) has a FVIIa 

IC50 = 16 nM with selectivity for FVIIa over thrombin and FXa (>6000 fold) (figure 15) 

[63, 64].  This compound was eventually used in primates to show that FVIIa inhibition 

can prevent thrombosis and have a lower risk of bleeding [65]. 
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Figure 15.  Crystal structure of 9 bound in the active site of TF/VIIa complex at 2.1 Å 

resolution. Some important side chains of Factor VIIa are shown. The dotted white lines 

represent hydrogen bonds between the inhibitor and FVIIa. The m-amino group makes 

contacts in the S2 pocket, while the carboxylic acid group interacts with the -amino group 

of Lys 60A.  This image is adapted directly from [64].   
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1.6.7 Pyrazinone prodrugs:  The best compound in this series contains a basic 

benzamidine moiety which is associated with undesirable pharmacokinetics, namely poor 

oral activity.  Two prodrugs (10, 11) were made of the best pyrazinone [59]. 
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1.6.8 Pyridinone based inhibitor:  By replacing the nitrogen at the 4 position of 

pyrazinone, you generate pyridinone as your core ring structure [66].  The new compound 

was less potent (13) (IC50 = 118 nM) due to loss of hydrogen bonding and van der Waals 

interactions (figure 16).  Further SAR studies led to the development of a compound (12) 

with 84 nM IC50 against TF/FVIIa and >700 fold selectivity over thrombin and FXa [59]. 
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Figure 16.  Crystal structure 13 bound in the active site of TF/VIIa complex at 2.2 Å 

resolution. Some important amino acids in Factor VIIa are shown.  The hydrogen bonds 

formed by the inhibitor are represented by dotted magenta lines.  This image is adapted 

directly from [66]. 
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1.6.9 Naphthyl-amidine based compound:  This FVIIa inhibitor (14) has an IC50 = 4 nM 

[59].   
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1.6.10 Benzimidazole and Indole amidines:  A benzimidazole based compound (15) had a 

Ki= 78 nM, but it was relatively nonspecific (figure 17).  Based on modeling studies with 

FVIIa active site, the benzimidazole ring was exchanged for an indole ring, a carboxylic 

acid group was added and the amine was switched with a nitro group to design (16), which 

resulted in a Ki of 3 nM and large increase in selectivity [67].   
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Figure 17.  A model of 15 bound in the factor VIIa active site.  This image is adapted 

directly from [67]. 

 

 

1.6.11 Amidinophenyl Urea inhibitors:  The lead compounds were identified from 

screening. The most potent compound had a Ki = 1.9 nM but minimal selectivity (17).  

Docking studies were performed to understand the orientation of compound 17 in the 

FVIIa active site.  The benzamidine binds in the S1 pocket, the two urea nitrogens interact 

with Ser195 and the other aromatic ring fits into the S2 pocket.  Alpha position 

methylation and ring substitution decreased potency, but were able to greatly enhance 

selectivity [68].  Compound 18 has a FVIIa Ki = 23 nM, a thrombin Ki = 16400 nM and a 



www.manaraa.com

34 

FXa Ki >10000 nM.  Compound 19 has a FVIIa Ki =27 nM, a thrombin Ki >100000 nM 

and a FXa Ki >10000 nM.   

 

NH

NH2

N
H

N
H

N
H

N
O

O  

17 

NH

NH2

N
H

N
H

N
H

O

O

O

N
H

O

 

18 

NH

NH2

N
H

N
H

N
H

O

O CF3

CF3

 

19 

AMIDINOPHENYLUREA BASED INHIBITORS  

 

 



www.manaraa.com

35 

1.6.12 Tifacogin: the recombinant form of TFPI.  However, it differs slightly from 

endogenous TFPI by one additional alanine at the N terminus and the recombinant form is 

not glycosylated.  Tifacogin (and TFPI) have a two step binding process.  First, tifacogin 

binds to and inactivates FXa by binding to the catalytic domain. Then the TFPI/FXa 

complex inhibits TF-bound FVIIa [69].  Although it was believed to have potential 

therapeutic benefit in the treatment of sepsis [69], it has been shown not to be efficacious 

in sepsis [22].   

 

1.6.13 Recombinant nematode anticoagulant protein c2 (rNAPc2):  an 85 amino acid 

polypeptide produced by the dog hookworm, Ancylostoma caninum.  The recombinant 

form is expressed in the yeast, Pichia pastoria [70].  NAPc2 requires two binding steps to 

mediate its mechanism of inhibition.  NAPc2 initially binds to a noncatalytic site on factor 

X or factor Xa [71].  Factor Xa or factor X can be considered cofactors that are an absolute 

requirement before NAPc2 can bind to the FVIIa/TF complex [70].  Once bound to factor 

X(a), NAPc2 will bind to TF/FVIIa and form a quaternary complex [71].  The 

NAPc2/FX(a) complex inhibits FVIIa in the FVIIa/TF complex.  This mechanism is like 

TFPI but different in an important way.  TFPI must utilize activated factor X (FXa) 

because it needs to access the active site [71].  Since NAPc2 can bind both FXa and FX, 

this implies binding to another region, like an exosite or an extended binding site [71].  

Interestingly, when FXa is part of the quaternary complex, it can still cleave small peptidyl 

substrates, but not prothrombin [72].  The binding of the FX(a)/NAPc2 complex to the 

TF/FVIIa complex is initially mediated by the interaction of the (Gla)-domain of FX and 
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the cell membrane [71].  The reactive portion of the rNAPc2 inserts into the catalytic site 

of FVIIa.  This forms a reversible, competitive complex with a slow dissociation rate [71].  

NAPc2 prolongs PT at concentrations that do not prolong APTT which is indicative of an 

anticoagulant that affects the extrinsic pathway while sparing the intrinsic pathway [73].  

However, APTT is prolonged at higher concentrations because rNAPc2 has a FXa Kd= 

780 pM, which sterically restricts the formation of the prothrombinase complex (Ki= 5 

nM) [72].  The half-life of rNAPc2 is >50 hours, which causes concern about overdosing a 

patient [74].  To counteract this problem, recombinant factor VIIa has been explored as an 

antidote [75].   

 

1.6.14 E-76: an 18 amino acid peptide (Ac-ALCDDPRVDRWYCQFVEG-NH2).  The 

precursor for E-76, E-56, was discovered using phage display of naive peptide libraries.  E-

76 was generated by creating partially randomized phage library based on the E-56 

structure.  The IC50 values for E-76 inhibition of factor X activation and inhibition of small 

molecule substrates was 1.1 nM and 7.4-9.7 nM, respectively.  Like other FVIIa inhibitors, 

E-76 selectively prolongs PT without altering APTT.  Both E-56 and E-76 bind to an 

allosteric site on FVIIa and noncompetitively inhibit the FVIIa active site, however the 

binding is Ca+2 dependent.  E-76 has a Kd= 8.5 nM for both FVIIa and the FVIIa/TF 

complex, while no binding was detected for TF alone or numerous other serine proteases.  

This indicates a strong selectivity for FVIIa and no preference for the presence or absence 

of TF.  This selectivity is likely achieved because serine protease active sites tend to be 

very similar while serine protease exosites are inherently unique because they are 
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responsible for determining substrate recognition and specificity.  Based on 

crystallography and mutagenesis studies, the E-peptide exosite is described as a trough that 

is separate from, but close to the active site (figure 18).  One of the walls that make up the 

exosite trough contains the Ca+2 binding site.  This explains the Ca+2 requirement for E-

peptide binding and inhibition.  The hydrophobic face of E-76 makes contact with FVIIa 

while the helix located at the N-terminus interacts with the Ca+2 binding site.  E-76 causes 

a conformational change in the 140s activation loop of FVIIa.  This loop is involved in FX 

recognition and it is also located closely to the active site.  It is thought that E-76 binding 

can inhibit FX activation by sterically impeding FX binding and by disrupting the 

oxyanion hole that is present in the FVIIa active site.  This has been described as an 

allosteric “switch” mechanism of inhibition mediated by the 140s activation loop.  This 

represents completely novel mechanism of action for the design of direct FVIIa inhibitors 

[76].   

 

1.6.15 A-183 has the primary sequence EEWEVLCWTWETCER and contains one 

disulfide bond [77].  A-183 is a peptide based inhibitor of FVIIa that binds to a novel 

exosite near the active site (figure 18).   This binding site has not previously been 

described in FVIIa or any serine protease as a substrate recognition site or an inhibitory 

exosite.   A-183 was discovered using a peptide phage library much like E-76.   This new 

exosite is different from the E-76 exosite.   Specifically, the novel exosite is composed of 

the 60s loop and the C-terminus, with Trp61 and Leu251 being critical for binding.   A-183 

prolongs PT but not APTT, demonstrating its specificity for TF dependent clotting.   The 
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dissociation constants for A-183 binding to FVII and FVIIa were 1.4 ± 0.1 and 2.8 ± 0.2, 

respectively.   In the presence of tissue factor, the Kd values for TF/FVII and TF/FVIIa 

were 10.0 ± 1.2 and 5.5 ± 0.5, respectively.   Competitive binding studies with E-76 

yielded a TF/FVIIa + E-76 Kd= 5.5 ± 0.5, indicating that the A-183 and E-76 binding sites 

are distinct and noncontiguous.   A-183 is specific for FVIIa because no binding was 

observed for the other nine serine proteases [78].   A-183 potently inhibits FX and FIX 

activation by TF/FVIIa (IC50= 1.6 ± 1.2 and 3.5 ± 0.3, respectively).  The Ki for FX 

activation is 200 pM, but its maximal inhibition of FX activation is 78 ± 3%.  This 

incomplete inhibition of TF/FVIIa is considered desirable because it allows for the 

development of novel anticoagulants with an increased therapeutic window [77]. 
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Figure 18.  The various FVIIa binding sites. The distinct regions of the peptide binding 

exosites for A-183 (green) and E-76 (blue) are shown for FVIIa.  The active site region is 

covalently modified with D-Phe-L-Phe-L-Arg-chloromethyl ketone (red).  This image is 

adapted directly from [77]. 

 

 

1.6.16 Inactivated FVIIa (FVIIai or FFR-FVIIa):  This is a recombinant form of human 

FVIIa in which the active site has been covalently inactivated by the inhibitor Phe-Phe-Arg 

chloromethyl ketone [60].  FVIIai competes with endogenous FVIIa for the opportunity to 

bind with tissue factor [60]. 
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1.6.17 Anti-TF antibodies: a monoclonal antibody that directed against an epitope that is 

present on both FVII and FVIIa (Corsevin MTM) [60].   

 

1.7 Inhibitors of propagation of coagulation 

1.7.1 Mechanism of Action 

These molecules block FIXa, FXa, or their cofactors FVIIIa or FVa, respectively.  This 

results in a down regulation of thrombin production and a slowing of the FXa mediated 

feed back activation loops that result in prothrombinase complex formation as well as 

prothrombin activation.  FXa inhibitors can influence coagulation without affecting platelet 

function, which is believed to decrease inappropriate bleeding side effects [61]. 

Direct FXa inhibitors bind to the active site.  Unlike the heparin: AT complex, 

direct FXa inhibitors inhibit both free FXa and platelet bound FXa, which is part of the 

prothrombinase complex [21].  This is theorized to make them superior to indirect 

inhibitors.  Many of the currently reported non-peptide FXa inhibitors have a dibasic 

functionality, which limits their oral bioavailability, but it has been shown that less basic 

inhibitors are also active [13].  

 

1.7.2 Factor Xa active site  

The S2 pocket is considered to be blocked by Y99 and is believed to mediate the 

preference of FXa for Gly substrates [79].  However, opposite the S2 is a cleft, which has 

an architecture that is considered specific to FXa, and is composed of E147, Q192, G218, 

C191 and C220 [79].  The cleft has been termed an “ester pocket” because it readily 
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accommodates such groups in inhibitor co-crystallization experiments.  The S1 pocket 

contains the catalytic triad and has similar geometry to the other serine proteases and there 

are numerous opportunities for hydrophobic interactions as well as ionic and hydrogen 

bonding.  Since the S1 pocket is not exclusively driven by electrostatic interactions, it is 

possible to use less basic, more hydrophobic moieties as inhibitors.  This is important 

because it makes the design of orally active inhibitors possible without the use of a prodrug 

strategy.  Compared with trypsin, the S1 pocket does contain differences that can lead to 

selectivity.  Trypsin has a Ser 190, while FXa has an Ala at that position.  This causes an 

enlargement of the S1 pocket in FXa.  S4 pocket in FXa is a deep hydrophobic groove 

composed of Y99, F174 and W215 [79].  Trypsin has a different S4 pocket, which is 

composed of L99, Q175 and W215.  These differences make the FXa groove deeper and 

more aromatic in nature, which is conducive for π stacking interactions with potential 

inhibitors.  Based on experimental evidence, it has been shown that differences in the S4 

pocket are more important than the S1 pocket for inhibitor design and selectivity [79].  

However, both contribute significantly.  Asp189 ionic interactions are possible in the S1 

pocket, but not absolutely required.  More important are hydrogen bonding with the 

carbonyl and backbone amide of G219 and hydrophobic interactions with the top of the S1 

pocket.  Aromatic interactions in the S4 pocket are paramount [79].   
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Figure 19.  The structure of FXa active site.  The active site residues and other key 

residues are displayed for reference.  This image was created from the PDB file 1ezq using 

sybyl 7.2   
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1.7.3 Benzamidine based factor Xa inhibitors 

1.7.3.1  3-amidobenzyl derivatives:  Although these compounds are not 

particularly potent (Ki ~5 µM), they are historically important because they showed for the 

first time that direct FXa inhibition could exhibit an anticoagulant effect [80].  These 

molecules contain the 3-amidobenzyl group as shown in 20.   
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1.7.3.2  KFA-1411: Ki = 1.7 nM and it has a 15,000-fold selective over thrombin, 

3600-fold over trypsin, 80-fold selective over kallikrein and plasmin [81].  KFA-1411 is a 

closely related analogue of KFA-1982 and its prodrug KFA-1892, which are under further 

development and their structure has not yet been disclosed. 
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1.7.3.3  β-amidoesters: precursors to FXV673, the most potent FXa inhibitor in 

this series. Compound 22, has a Ki of 37 nM as a racemic mixture.  The R,R stereoisomer 

has a Ki= 21 nM, whereas the S,S stereoisomer has a Ki= 100 nM.  The benzamidine binds 

in the S1 pocket and the biphenyl groups bind in the S4 pocket [82].  Compound 23 has the 

ethyl phenyl replaced by a smaller methyl group and that produces a Ki= 5.3 nM [83].  

Several different substitutions were tried on the biphenyl ring and compound 24 was 

observed to be both potent (FXa Ki= 1.3) and selective (thrombin Ki >4000 nM, trypsin 

Ki= 185 nM).  Compound 25 was more potent than 24 but less selective (FXa Ki= 0.9, 

thrombin Ki >2920 nM, trypsin Ki= 95 nM) [84].  Compound 25 was designed to form an 

ionic interaction with the S4 pocket [84].  Compound 26 shows that productive S4 

interactions can be achieved through hydrogen bonding (FXa Ki= 69 nM).  Compound 26 

has a thrombin Ki= 3950 nM and a trypsin Ki= 90 nM.  The S4 pocket can also bind 

heteroaromatic rings [85].  Otamixaban (27) (FXV673, RPR130673) was shown to be 

very potent (Ki= 0.4 nM) and selective (thrombin Ki= 4000 nM, trypsin Ki= 300 nM) [82].  

The binding is described as fast, tight and reversible with a >1000-fold selectivity over 

thrombin, activated protein C, plasmin and tissue plasminogen activator [82].  The IC50 = 

1.38 nM against the prothrombinase complex [82].  The benzamidine group forms a 

hydrogen bond with the carbonyl of Gly 218 and forms ionic interaction with Asp189 

(figure 20) [85].  There is hydrogen bonding between the amide linkage and amine of 

G218.  The N-oxidepyridylphenyl group interacts with the S4 pocket by making 
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hydrophobic interactions [85].  It also forms a hydrogen bond between its N-oxide and a 

water molecule that interacts with the FXa backbone [85].   
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Figure 20.  Otamixaban bound to the FXa active site.  The FXa carbon atoms are shown in 

green, while the otamixaban carbon atoms are shown in orange.  The large red spheres 

represent water molecules and the dashed white lines indicate various interactions.  This 

image is adapted directly from [85]. 
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1.7.4 Hydroxylated benzamidine based factor Xa inhibitors 

1.7.4.1  ZK-807834 (28) is a selective FXa inhibitor (527 Da) possessing a Ki = 

0.11 nM with >2500 fold selectivity against other serine proteases.  ZK-807834 makes 

contacts with Asp189 and Ser195, as well as aromatic ring-stacking interactions with 

Trp215 (figures 21 and 22) [86, 87].   
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Figure 21.  Structure of ZK-807834 demonstrating its most important interactions with 

factor Xa. Close contacts are indicated by thick black lines and hydrogen bonds are 

illustrated with dotted lines.  This image is adapted directly from [87]. 
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Figure 22.  ZK-807834 bound in the factor Xa active site. The carbon atoms of the 

inhibitor are colored green. Asp189 at the bottom of the S1 pocket and Glu97 in the S4 

pocket are light blue. The catalytic triad Ser195, His57, and Asp102 are orange. Residues 

that make up the S4 pocket (Tyr99, Phe174 and Trp215) are magenta, while hydrogen 

bonds are shown as dotted lines.  This image is adapted directly from [87]. 

 

 

1.7.4.2  Hydroxylated amidopropylbenzamidines and Hydroxylated allyl-

benzamidines:  Compounds 29-34.  Addition of a hydroxyl group to compound 30 

increases the potency from 1000 nM (29) to 88 nM (30) [88].  The addition of a 
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carboxyamide (31) increased the potency to 7 nM.  Hydroxylated allyl-benzamidines are 

restricted analogues of the hydroxylated amidopropylbenzamidines.  These structures 

gained some potency over their saturated counterparts.  Compound 32 has a Ki = 51 nM 

compared with a Ki = 88 nM for the saturated analogue above in the hydroxylated 

amidopropylbenzamidine series (30).  The most potent derivative was compound 34 with a 

Ki= 0.75 nM, while compound 33 had a respectable FXa Ki = 5 nM [88].   
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1.7.5 Naphthyl-amidine based factor Xa inhibitors 

1.7.5.1  DX-9065a is a 571 Da, reversible, non-peptidic Arg derivative 

(peptidomimetic) that targets the active site of FXa [82].  Its selectivity for FXa over 

thrombin is very good (Ki= 41 nM vs. >2000 µM) [81].  It inhibits free FXa, FXa in the 

prothrombinase complex, clot bound FXa and clot bound prothrombinase complex [89].  

The naphthamidine portion binds in the S1 pocket by forming a salt bridge with Asp189.  
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The pyrrolidine ring binds to the S4 aryl binding site [90].  Thrombin Glu192 has a 

repulsive electrostatic interaction with the carbonyl group of the inhibitor, which provides 

the basis for selectivity [91].  Because of its three charged groups, it has poor 

pharmacokinetic properties [91].  It has also been determined to have undesirable 

cardiovascular side effects [91].  Because of these properties, DX-9065a is a parenteral 

agent.  An oral form of DX-9065a, DU-176b, has been created but its structure remains 

unknown [55]. 

N
NH

NH2

O
NH

O OH

DX-9065a  

35 

 

 

 

 

 

 

 

 

 



www.manaraa.com

53 

1.7.5.2  YM-60828 (36) is a peptidomimetic, N-((7-amidino-2-

napthyl)methyl)aniline derivative, which is selective for FXa.  Lipophilic substitutions are 

detrimental to activity, while hydrophilic substitutions enhanced the anticoagulant effect in 

the prothrombin time assay.  YM-60828 is a sulphamoyelacetic derivative with a Ki = 2.3 

nM.  The YM-60828 IC50 value for thrombin and trypsin is >100,000 nM and 216 nM, 

respectively [92].   
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1.7.5.3  Benzoxazinone derivatives (37) is a lead compound that has been 

described by Millennium Pharmaceuticals, is potent against FXa (Ki= 0.7 nM) [55].   
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1.7.6 Non-amidine based factor Xa inhibitors  

1.7.6.1  Rivaroxaban (BAY 59-7939) (38) is an orally available, small molecule 

that is a direct and selective competitive FXa inhibitor [55].  It is interesting because it 

does not contain an amidine group to target the enzymes active site.  The FXa Ki= 0.4 nM 

and rivaroxaban exhibits >10,000-fold selectivity over other serine proteases.  Rivaroxaban 

can potently inhibit the prothrombinase complex (IC50= 2.1 nM) and FXa in human plasma 

(IC50= 21 nM).  Rivaroxaban is capable of doubling PT and APTT at concentrations of 

0.23 µM and 0.69 µM, respectively [55].   
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1.7.6.2  M55113:   (39) a potent and highly selective inhibitor of FXa (Ki = 60 nM).  

39 is considered to be a peptidomimetic with structural similarities to DX-9065a (35) and 

YM-60828 (36) [13]. 
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1.7.6.3  LY-517717: (40) This indole based compound represents a lead structure 

for FXa inhibitors.  It is orally available, potent (Ki= 5 nM) and has a 1000-fold selectivity 

over the other serine proteases [93].   
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1.7.7 Non-amidine based factor Xa inhibitors developed from amidine based inhibitors 

1.7.7.1  DPC-423 (43) is a biphenylamine containing amide.  It is an orally active, 

competitive, noncovalent inhibitor of FXa with a Ki= 0.15 nM [94].  The earlier 

compounds that lead to this structure were isoazolines derivatives with benzamidine 

moieties for basicity.  SF303 (41) is a representative structure [95].  The isoazoline core 

was replaced with a pyrazole to create SN-429 (42) (FXa Ki= 13 pM) [94].  Modifications 

to SN-429 (42), which included poly-fluorination and the replacement of the highly basic 

benzamidine with benzylamine, resulted in DPC-423 (43) [94].  It is considered to be 

selective over the other coagulation proteases but not selective for trypsin and kallikrein 

with Ki = ~60 nM for both enzymes [94].  DPC-602 (44) is an analogue of the 3-

(aminomethyl)phenylpyrazole DPC423, which was created to improve the selectivity of 

FXa inhibition (figure 23).  By creating the 2-(aminomethyl)phenylpyrazole (DPC-602), a 

>1000-fold selectivity over the other serine proteases [96].  Razaxban (DPC-906) (45) is a 

synthetic, non-peptide oral FXa inhibitor.  It has a molecular mass of 564.92 Da and FXa 

Ki= 0.19 nM [97].  This compound is considered the next generation compared to DPC-

602 (44) and DPC-423 (43).  The benzylamine has been replaced with an 

aminobenzisoxazole to given better selectivity over trypsin (Ki >10,000) and kallikrein (Ki 

>2300) while still maintaining selectivity over the coagulation proteases [97].  

Modifications to the biphenylamine were also made by replacing the distal phenyl ring 

with a substituted imidazole.   
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Figure 23.  X-ray structure of 45 (razaxaban) in the factor Xa active site. The amino group 

formed hydrogen bonds with Asp189 (2.7 Å) and the carbonyl group of Gly218 (3.5 Å). 

The pyrazole N-2 nitrogen interacts with the backbone NH of Gln192 (3.4 Å) and the 5-

carboxamide carbonyl interacts with the NH of Gly216 (3.0 Å). The N-3 nitrogen of the 

imidazole P4 group forms a direct hydrogen bond (3.6 Å) and indirect hydrogen bonds 

through a water molecule (3.0 and 3.1 Å) with Glu97.  This image is adapted directly from 

[97]. 
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1.7.7.2  3-Sulfonamido Pyrrolidinones:  The general structure of this class of 

molecules is as shown in figure 24.  

Several substitutions were made on the 

naphthalene ring.  These substitutions 

were done to probe the S4 pocket to 

increase activity.  The best compound 

had a 7 position methoxy group 

(compound 46, Ki= 47 nM) [82].  Using compound 46, the benzamidine was changed by 

incorporating heteroaromatic benzamidines to find improved activity.  The 2,4 thiophene 

amidine (47) was observed to increase potency to Ki= 11 nM [82].  Methylation of the 

sulfonamide nitrogen atom increase potency by ~2-fold [82].  These SAR findings were 

combined to create compound 48 (RPR120844) [98].  It has a FXa Ki = 7 nM and good 

selectivity over thrombin (140-fold), trypsin (76-fold), plasmin (630-fold), t-PA (>1000-

fold) and aPC (340-fold).  A hydroxylated benzamidine was used to create a compound 49 

with increased potency (FXa Ki = 3 nM) and good selectivity over thrombin (Ki = 206 

nM), trypsin (Ki = 305 nM) [82].  Benzothiophenes were substituted in place of the 

naphthalene rings and shown to improve potency relative to unsubstituted napthalene.  

Chloro substitutions on the benzothiophene ring further improved activity.  Compound 50 

which is a 6-chlorobenzothiophene was the most active chloro substituted compound with 

a FXa Ki = 4 nM [82].  Compound 50 selectivity is excellent (thrombin Ki= 1200 nM and 

trypsin Ki= 1200 nM).   

N R3S
O

O
N

O

R1
R2

Figure 24. General structure of 3-
Sulfonamido Pyrrolidinones 
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 Other thiophenes were examined for activity.  Compound 51 contained a 3-

pyridylthiophene combined with a hydroxylated benzamidine.  It was both potent and 

selective for FXa (Ki = 2 nM) (Thrombin Ki = 2800 nM and Trypsin Ki= 2900 nM) [99].  

Thienopyridines were also investigated for their ability to probe the S4 pocket.  The most 

potent of this series was compound 52 (Ki= 0.7 nM).  Compound 51 was further studied 

(RPR130737) and determined to be a competitive, fast binding, reversible FXa inhibitor 

[99]. 

  The benzamidine has a pKa of ~11 and that basicity limits its permeability, 

ultimately limiting its oral bioavailability.  By cyclizing the amidine into an 

aminoisoquinolone, the pKa drops to ~7.  When thienopyridine is added to the scaffold 

containing a less basic moiety, the Ki= 22 nM (53) [82].  When the thienopyridine is 

retained but the aminoisoquinolone is replaced with a 6-azaindole (54), a Ki= 18 nM is 

achieved [100].   
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1.7.7.3  Ketopiperazine inhibitors:  The meta and para benzamidines were made 

and the para was found to be more potent (55 vs. 56).  The para benzamidine had a Ki= 1.3 

nM and the meta benzamidine had a Ki= 18 nM [82].  Both have strong selectivity over 

other serine proteases.  Interestingly, the crystal structure of compound 55 shows that the 

benzamidine moiety binds in the S4 pocket as opposed to the S1 pocket [101].  The chloro-

benzothiophene group binds to the S1 pocket.  Compound 57 (Ki= 1.4 nM) has an 

aminoisoquinolone in place of a benzaimidine moiety while compound 58 (Ki= 0.8 nM) 

has an aminoquinazoline.  Compound 59 has a 5-azaindole as a benzamidine replacement 

(Ki= 4 nM).  Compound 60 contains a chloro-thiophene in place of the chloro-

benzothiophene and an improvement in potency is observed (Ki= 1.1 nM).  Compound 60 

also binds with the chloro-thiophene in the S1 pocket and the benzamidine replacement in 

the S4 pocket [101]. 
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KETOPIPERAZINE INHIBITORS 

1.7.8 Transition state FXa inhibitors 

These inhibitors are based on the highly specific chromogenic FXa substrate D-Arg-Gly-

Arg-pNA (S-2765) [102].  The D-Arg residue binds in the S4 pocket with the p-

nitroaniline substituted Arg binding in the S1 pocket.  If the p-nitroaniline is replaced by 

an electron withdrawing group, the catalytic serine 195 can react with the electropositive 

carbonyl and form a hemiketal, which can be thought of as a transition state inhibitor 

[103].  The first transition state inhibitors which substituted a simple hydrogen in place of 

p-nitroaniline was shown to have an IC50= 50 nM.   
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1.7.8.1 α-ketothiazole:  Compound 62 was the first α-ketothiazole transition state 

inhibitor, D-Arg-Gly-Arg-ketothiazole.  It had a FXa IC50= 8nM, APC, a plasmin and t-PA 

IC50 >10 µM and a kallikrein IC50= 500nM [103].  Within this series, compound 63 was 

considered to be the most promising.  It displayed a FXa IC50= < 0.5 nM and exhibited 
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excellent selectivity over the other serine proteases (APC IC50= 6000 nM, plasmin IC50= 

300 nM and t-PA IC50= 330 nM and kallikrein IC50= 27 nM) [103].  The Ki for FXa was 

determined to be 13 pM and it does not exhibit slow binding kinetics [103].  The mode of 

binding for compound 63 is as follows: D-Arg binds in S4 making hydrophobic and ionic 

interactions as well as potential hydrogen bonding interactions.  The other Arg can form 

hydrogen bonds with Asp 189 in the S1 pocket and the reactive ketone can form a 

reversible hemiketal with Ser195.  The thiazole nitrogen is believed to hydrogen bond with 

His 57 [103].   
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 Different heterocycles were tested in place of ketothiazole (compound 64 vs. 65 

and 66).  There was no major difference in IC50 and all three were selective for FXa over 

thrombin.  Compound 64 had a FXa IC50= 1 nM, and a thrombin IC50= 24000 nM.  

Compound 65 had a FXa IC50= 2 nM and a thrombin IC50= 26000 nM.  Compound V had 

a FXa IC50= 2 nM, and a thrombin IC50= 1000 nM.  The ketothiazoles were ultimately 

retained for synthetic and performance reasons [103].  The large hydrophobic blocking 

group at the N-terminus enhances FXa binding through hydrophobic interactions and 

decreases thrombin affinity because of thrombin’s preference for a positively charged 

terminal amine [52].  Retention of the glycine residue affords the greatest degree of 

selectivity over thrombin (IC50= 0.65 nM to 10000 nM) but N-alkylation with methyl, 

phenyl and benzyl groups also yield subnanomolar IC50 values [103].  Exchanging glycine 

with proline eliminates FXa selectivity over thrombin due to thrombin’s penchant for 

proline substrates [52, 103].   
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 Despite creating potent and generally selective FXa inhibitors, due to the dibasic 

nature of the two Arg residues, there is no selectivity for FXa over trypsin [103].  

Replacement of the S1 binding Arg with a less ionic or neutral moiety is believed to 

increase selectivity and potential for oral absorption.  The incorporation of Trp in place of 

Arg yielded an inhibitor that was potent for FXa and selective over trypsin.  Compound 67 

has a FXa IC50= 39 nM, a thrombin IC50= > 500,000 nM and a trypsin IC50= 180,000 nM.  

Replacement of the N-terminal Arg with less basic or neutral organic substituents and 

amino acids led to less selectivity for the other serine proteases [103].   
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ALPHA-KETOTHIAZOLE INHIBITOR 

1.7.8.2 α-amino lactams:  Compound 68 has a FXa IC50= 29 nM but a thrombin IC50= 

138 nM [103].  The development of compound 69 showed a decrease in potency but 

excellent selectivity over thrombin with a FXa IC50= 65 nM and a thrombin IC50= 12,000 

nM [103].  Due to the difficulty in developing selectivity and the unwanted chiral center, 

lactams were abandoned in favor of simpler scaffolds. 



www.manaraa.com

70 

S
O

O

N

N
H

O

O

NH

NH2

NH

S

N

O

 

68 

NH

N

N
H

O

O

NH

NH2

NH

S

N

O

 

69 

ALPHA-AMINO LACTAMS  

 

1.7.8.3 Piperazinone transition state inhibitors:   Compound 70 has a FXa IC50= 4 nM 

but a thrombin IC50= 400 nM.  Better potency and selectivity can be achieved by 

benzenesulfonamide halogenation.  Compound 71 has a FXa IC50= 2 nM while thrombin 

IC50= 1000 nM.  Subnanomolar potency can be achieved with substituted fused bicyclic 

arylsulfonamides.  Compound 72 has a FXa IC50= 0.5 nM.  All three compounds 

mentioned still strongly inhibit trypsin due to the S1 binding Arg residue [103].   
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1.7.9 Non-small molecule factor Xa inhibitors 

1.7.9.1  Tick Anticoagulant peptide (TAP):  Produced from the soft tick, 

Ornithodorus moubata, TAP is also expressed as a recombinant protein (rTAP) in yeast 

[104].    This 60 amino acid polypeptide (6977 Da) exists as a monomer [105].  TAP is a 

direct factor Xa inhibitor that is a slow, tight binding, reversible, competitive inhibitor 

[106].  TAP has a factor Xa Ki= 0.18 nM [107].  The binding of TAP to factor Xa is a two 

step process that involves both low and high affinity binding steps.  The first step is the 

low affinity binding (Ki= 68 µM) to an exosite region that is does not effect the catalytic 

region of factor Xa.  This step is followed by the high affinity binding (Ki= 0.3 nM) step 

which forms a more stable complex between enzyme and inhibitor [107].  TAP is highly 

selective for factor Xa over all other serine proteases (minimum 50,000-fold selectivity) 

[106, 107].  This is likely due to its binding of both the catalytic site as well as a unique 

exosite.  The region of TAP that mediates the high affinity interaction by recognizing the 

catalytic domain of factor Xa is found in the amino terminal and there is no data showing 

that TAP is ever cleaved by factor Xa [108].  The other region of TAP that interacts with 

factor Xa are the amino acid residues found in positions 40-54.  These residues share 

homology with a factor Xa recognition sequence found in human and bovine prothrombin.  

The current model is that TAP residues 40-54 are responsible for the low affinity 

recognition of factor Xa at an exosite.  This association leads to a conformational change in 

TAP that promotes the interaction of the TAP amino terminus with the catalytic region of 

factor Xa, resulting in the formation of the high affinity complex [109].  This model is also 

consistent with the observation that TAP is able to inhibit the prothrombinase complex 
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[106, 110].  The prothrombinase Ki is a remarkable 6 pM, a 30-fold improvement over the 

free FXa Ki of 180 pM [110].  This great improvement in affinity for the prothrombinase 

complex has created speculation that TAP may also recognize factor Va [109].   

 

1.7.9.2  Ecotin: regarded as the most potent reversible FXa inhibitor to date, ecotin 

is an 18 kDa protein expressed in the periplasm of E. coli.  Ecotin is a potent reversible, 

tight binding factor Xa inhibitor (Ki= 54 pM) and it is believed to be protective against 

mammalian proteases that are present in the GI tract [111].  Because of this putative 

protective role, ecotin has mixed selectivity for FXa over other serine proteases.  Ecotin 

does not inhibit thrombin, TF/FVIIa, FXIa, aPC, plasmin or t-PA, but it does inhibit FXIIa, 

plasma kallikrein, human leukocyte elastase (HLE), trypsin and chymotrypsin.  In fact, 

ecotin is very potent against FXIIa, kallikrein and HLE (Ki< 1 nM).  Ecotin is capable of 

forming a homodimer with a Kd= 390 nM.  It has been shown that FXa slowly cleaves 

ecotin at the amide linkage between M84 and M85.  When M84 is mutated to R or L, the 

subsequent ecotin mutants exhibit greater factor Xa potency (Ki= 11 pM and 21 pM, 

respectively).  In addition to the changes in FXa potency, these mutants exhibited mixed 

selectivity against various serine proteases.  The mutants were able to inhibit thrombin, 

FXIa, aPC and plasmin, whereas, wildtype ecotin could not.  The mutants retained their 

potency towards FXIIa, kallikrein, trypsin and chymotrypsin but interestingly, they lost 

their potency towards HLE [111]. 
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1.7.9.3  Antistasin:  a 119 amino acid, (15-kDa) protein with 10 disulfide bridges, 

derived from the salivary glands of the Mexican  leeches Hementeria officinalis and 

Hementeria ghilianii  [112].  The 119 residues are separated into three domains.  Residues 

1-55, 56-110 and 111-119 constitute domains I, II and III respectively [113].  Domain I is 

the domain that directly inhibits factor Xa [114].  Although antistasin is selective for most 

serine proteases, it is still capable of inhibiting trypsin with nanomolar potency.  

Depending on the source, the reported FXa Ki= 470 -620 pM, the trypsin IC50= 10 nM and 

the trypsin Ki= 5 nM [115].  Antistasin binding to FXa is described as reversible and tight 

binding [115].  The most potent synthetic peptide derived from antistasin contains the 

amino acids found in positions 27-49 with a 35 nM Ki against FXa [116].  Antistasin, 

which has an Arg residue at position 34, mediates its inhibition by mimicking a natural 

substrate.  When Arg 34 binds in the P1 site of FXa, the amide bond directly following Arg 

34 is hydrolyzed and resynthesized [115].    

 

1.7.9.4  Therostasin:  an 82 amino acid (8990 Da) polypeptide produced by the 

salivary glands of the Rhynchobdellid leech Theromyzon tessulatum.  It is characterized as 

a direct FXa inhibitor with a FXa Ki= 34 pM, which is the most potent leech derived FXa 

inhibitor to-date [117].  Although it is inactive against most serine proteases, it has a 

trypsin Ki= 7.0 nM (> 200-fold selectivity).   

 

1.7.9.5  Ghilianten: a ~15 kDa anticoagulant protein derived from the salivary 

glands of giant Amazonian leech, Haementeria ghilianii [118].  Ghilianten is a potent, 



www.manaraa.com

75 

reversible inhibitor of FXa.  The ghilianten IC50= 3.1 pM for the inhibition of FXa within 

the prothrombinase complex [119].  Ghilianten has also been shown to have anti-metastatic 

properties [120].   

 

1.7.9.6  AcAP:  a nematode anticoagulant peptide from the hookworm, 

Ancyclostoma caninum [121].  It is a 8.7 kDa polypeptide with a factor Xa Ki= 323.5 pM.  

AcAP is capable of inhibiting the prothrombinase complex with an IC50= 336 pM.  AcAP 

is highly selective for FXa over other serine proteases.  However, at 50 nM, AcAP is 

capable of inhibiting the in vitro activity of factor XIa by 55% (compared to 98% 

inhibition of FXa in vitro activity at 50 nM).  In the PT assay, AcAP was superior to both 

hirudin and TAP by doubling the clotting time at 35 nM compared to 410 nM and 1256 

nM, respectively.  In the APPT assay, AcAP was superior to TAP, but not hirudin, by 

doubling the clotting time at 85 nM compared to 2365 nM and 32 nM, respectively [122].  

The recombinant AcAP (rAcAP) has been tested on LOX human melanoma cells and 

shown to be antimetastatic.  These studies show that rAcAP prevents specific interactions 

between factor Xa and tumor cells by blocking active site mediated interactions and 

prothrombinsae complex activity [123].    

 

1.7.9.7  Lefaxin: a 30 kDa protein that is produced in the salivary glands of the 

leech Haementeria depressa.  Lefaxin is a direct FXa inhibitor with a Ki= 4nM.  Lefaxin is 

also capable of inhibiting the prothrombinase complex (IC50= 40 nM) [124].    
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1.7.10 FIXa active site 

FIXa is considered to be a catalytic weakling compared to thrombin and FXa.  While most 

serine proteases like thrombin and FXa readily cleave a variety of peptide and synthetic 

substrates, FIXa is considered to have poor amidolytic activity [125, 126].  The other 

clotting serine proteases are able to hydrolyze synthetic substrates that have a natural 

recognition sequence with a catalytic efficiency (kcat/KM) ranging from 105-106 M-1 sec-1 

[126].  However, no synthetic substrates with a kcat/KM >103 M-1 sec-1 has been developed 

or discovered [125].  The S1 pocket appear geometrically similar to FXa, which is 

considered to be catalytically efficient, two specific residues appear to mediate a structural 

disadvantage to FIXa and its catalytic abilities [127].  Glu 219 is positioned at the entrance 

of the S1 pocket and is highly conserved in mammalian FIXa sequences, while this 

position is occupied by a conserved glycine residue in the other serine proteases [128].  A 

tyrosine residue in a segment known as the 99-loop also places steric constraints on access 

to the factor IXa active site.  The 99-loop is on the border of the S2-S4 sites and the Y99 

residue directly impinges on the S2-S4 site affecting its size and chemical nature [129].  

FXa also has a Y99 but its orientation is very different [127].  In FIXa, the Y99 is able to 

adopt various conformations, depending on what is bound to the active site.  In the relaxed 

state, Y99 is observed to be blocking the S2 and the S4 site [125].  This is deemed to be 

unsuited for proper substrate binding and efficient amidolytic activity.  Rotation of Y99 to 

an orientation more closely resembling that of FXa is believed to be necessary for FIXa to 

be more catalytically competent.  Even when large inhibitors are bound, the Y99 occludes 

the S4 pocket [127].  Based on experimental evidence, it is speculated that the binding of 
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FVIIIa to FIXa may indirectly reorient the 99-loop, which displaces Y99 and allows for 

better access to the entire FIXa active site [127].  It is this restricted active site that has 

made FIXa chromogenic substrate and inhibitor development so challenging.   

 

1.7.11 FIXa inhibitors 

1.7.11.1 Small molecule inhibitors of factor IXa 

Since FIXa is specific to the intrinsic pathway, its inhibition can be used to reduce 

undesirable clotting in areas where TF is low.  FIXa inhibitors are not expected to be 

effective in areas where TF is high.  These include areas where vascular damage has 

occurred including wounds found at surgical sites [130].  A selective, efficacious FIXa 

inhibitor should be able to increase the clot time in the APTT assay at a low dose, while 

not affecting the clot time observed in the PT assay [131].  A group at Celera has recently 

screened their small molecule library to identify inhibitors of FIXa [130].  This resulted in 

a lead compound, a 5-amidino-benzimidazole analog (73), which had a 99 nM potency 

towards FIXa.  However, it was not sufficiently active in the APTT nor did it show enough 

selectivity over FXa and FVIIa.  They reasoned that decreasing the lipophilicity of 

compound 73 would enhance activity in the APTT assay [132].  They decided to exchange 

the phenolic ring with a heterocycle that was less lipophilic but that would not drastically 

alter the molecular weight.  Thus, compound 74, a hydroxyl pyrazole was designed [132].  

Replacement with the 5 atom heterocycle, altered the geometry of the phenyl substituent 

and changed the position of hydroxyl group, yet the hydroxyl pyrazole displayed better 

potency towards FIXa [132] and improves its performance in the APTT assay.  The Celera 
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group felt that by modifying the phenol to a more hydrophilic moiety, they had “improved 

the physicochemical properties” of the compound which “translated into better ex vivo 

efficacy” [132].  The new hydroxyl pyrazole also had increased selectivity for FIXa over 

the other pro-coagulant serine proteases, specifically thrombin, FXa and FVIIa [132].  The 

hydroxyl pyrazole was not very active in the PT assay, which is an expected and desirable 

trait for FIXa inhibitors.  Removal of the benzimidazole moiety and replacing it with an 

amide linkage made the compound inactive.  Removal of the amidine also eliminates 

activity because it is believed to interact with Asp189 located in the S1 pocket [133].  

According to the authors there are at least three factors that help enhance the selectivity of 

compound 74.  The position of the Asp189 is almost an angstrom different between FIXa 

and FVIIa in the S1 pocket of the active site.  This makes the FIXa S1 pocket bigger, 

which allows compound 74 to bind deeper in the pocket.  Also, in FIXa, Phe41 is closer to 

the S1 pocket than it is in FVIIa.  This puts the Phe41 in closer proximity to the terminal 

phenyl group.  The angle between the amido-benzimidazole moiety and the phenyl ring is 

greater when connected by a 5 member ring as compared to the 6 member ring.  This gives 

the structure a more linear look.  The two unique architectural features of the FIXa active 

site along with the more linear inhibitor appear to allow for deeper binding in the pocket, 

increased potency and increases selectivity [132].  This hydroxyl pyrazole offers a 

promising scaffold from which to make analogs that are both selective and efficacious for 

FIXa.   
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FACTOR IXa INHIBITORS 

 

1.7.11.2 Non-small molecule inhibitors of factor IXa 

Prolixin-S is an anticoagulant heme protein (19,992 Da) that is expressed in the salivary 

glands of the kissing bug (a blood sucking insect), Rhodnius prolixus.  Prolixin-S is a 

specific inhibitor of intrinsic pathway because it prolongs APTT but not PT.  More 

specifically, prolixin-S inhibits factor IXa and prevents activation of FX in presence of 

Ca2+ and phospholipids.  However, the presence or absence of FVIIIa had no effect on 

prolixin-S inhibition of FIXa.  The prolixin-S IC50 for the inhibition of the factor X 

activation complex in the presence and absence of FVIIIa is ~1.75 µM (~35 µg/ml) in both 

cases.  Prolixin-S does not affect the amidolytic activity of FIXa.  Prolixin-S is believed to 

block the interaction between FIXa and factor X on the phospholipid surface [134].   
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1.8 Inhibitors of fibrin formation 

Direct thrombin inhibitors (DTIs) prevent thrombin from interacting effectively with its 

substrates.  Thrombin inhibitors prevent fibrin formation, block thrombin-mediated 

feedback activation of FV, FVIII, XIII and FXI, attenuate thrombin induced platelet 

aggregation, block activation of protein C and many other functions of thrombin [37]. 

   

1.8.1 Requirements for good DTI 

-Low Ki.  If the potency is too low, then the DTI will be ineffective.  However, if the Ki is 

too low then other problems can arise (e.g. as observed with the tight binding inhibitor, 

hirudin).   

- Needs to be selective for thrombin.  This is typically most difficult for trypsin.  However, 

some advocate the concept that less specific, dual coagulation protease inhibitors would be 

potentially superior.   

-Needs to be orally bioavailable.  There are several effective parenteral anticoagulants 

(heparin, LMWH, hirudin, argatroban) but only one orally active anticoagulant has been 

approved in the U.S (warfarin). 

-Balanced lipophilicity:hydrophilicity.  If the DTI is too hydrophobic then increased 

plasma protein binding will be problematic [135].   

-Need avoid hepatobiliary excretion [135].  This can typically be accomplished by 

enhancing the hydrophobicity of the drug.  This is especially important because issues with 

hepatotoxicity (e.g. Ximelagatran caused liver toxicity which ended its bid to replace 

warfarin as the oral anticoagulant of choice) [135].   
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1.8.2 DTI advantages  

It is expected that DTIs will produce a more predictable anticoagulant response, because 

assuming that lipophilicity is not excessive, DTIs will not bind plasma proteins. [136].  

DTIs do not need the assistance of endogenous cofactors such as heparin cofactor II or 

antithrombin, and they are able to inhibit free thrombin as well as fibrin-bound thrombin 

[136].  DTIs can also inhibit the effects of thrombin on platelets like thrombin-induced 

platelet aggregation.  DTIs do not bind PF4 [136] and do not induce autoimmune 

thrombocytopenia like heparin [37].  Thrombin has also been implicated in promoting 

tumor growth and DTIs may represent an adjuvant therapy [137].   

 

1.8.3 Thrombin active site 

Thrombin is a serine protease and is considered to be a trypsin-like member of the 

broader chymotrypsin family (figures 25-28).  Similar to trypsin, thrombin has a 

preference for substrates that have a positively charged amino acid in the P1-position, the 

N-terminal residue constituting the scissile bond.  The structural basis for this preference 

comes from the Asp189 residue that lines the bottom of the S1 pocket and makes 

electrostatic interactions with cationic substrates [138].  The specificity pocket (S1), which 

houses the catalytic triad, has very similar geometry to the other known serine proteases 

like trypsin and chymotrypsin.  The catalytic triad is composed of Ser195-His57-Asp102 

[139].  The S2 pocket is described as “much more encapsulated and hydrophobic than that 

of trypsin” [57].  With respect to the S3 pocket, thrombin is considered to be more acidic 

then most serine proteases because it contains a Glu at position 192.  The S4-subsite is 
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composed of W215, I174, E217 and has a very different architecture compared to trypsin 

[57].  Additionally, the S4 pocket has a preference for an aliphatic group, while proline 

binds best in the S2 pocket and Arg is preferred in the S1 pocket [138].  Early studies 

showed that the tripeptide, Arg-Pro-Phe, was a high affinity peptide for thrombin and 

imitated many natural substrate interactions.  The Arg residue binds at the P1 position, 

while the Pro occupies position P2 in the narrow active site cleft.  Phe makes aromatic 

interactions in a manner similar to natural substrate residues found in the P4 position.  

However, this tripeptide makes no other interactions due to its length [140].  Thrombin has 

many roles in coagulation, and therefore many substrates.  In order to appropriately 

coordinate all of these tasks, thrombin relies on subtle structural differences in its tertiary 

structure to facilitate proper substrate recognition and discourage improper substrate 

recognition [140]. 

One obvious region of the thrombin tertiary structure that confers substrate 

selectivity are the residues immediately surrounding the catalytic triad in the active site.  

Some of the first crystallographers to study thrombin describe its active site as “a deep, 

narrow canyon” because of its deep narrow cleft that must be traversed to access the 

catalytic serine [57].  The two sides of the canyon are insertion loops known as the 60-loop 

and the γ-insertion loop. The amino acids that form the “rims” of the active site cleft are 

overwhelmingly hydrophobic. Based on the secondary and tertiary structure of these loops, 

they are able to restrict substrate access to the catalytic serine and confer selectivity.    The 

unique 60-loop (Leu60, Tyr60A-Thr60I) is considered to be hydrophobic and rigid due to 

the type of residues present and the two consecutive prolines, respectively. The complete 
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sequence of the loop is LYPPWDKNFT [140].  This loop will favorably interact with 

hydrophobic residues that are located N-terminally to the P1 position, while interaction 

with hydrophilic residues will be selected against.  Unlike trypsin, which is considered to 

have a more open active site, Tyr60A-Trp60D imposes great steric hindrance and is likely 

responsible for limiting thrombin’s active site accessibility to substrates and inhibitors 

alike [57].  The γ-insertion loop (Thr147, Trp147A-Val147F) is considered to be more 

hydrophilic and more flexible then the 60-loop.  The residues that make up this loop are 

TWTANV [140].  The γ-insertion loop also plays a role in substrate specificity because it 

partially occludes the active site [140]. The γ-insertion loop interacts with the substrate 

amino acids that are located C-terminally to the P1 position.  

   

Figure 25.  An illustration of thrombin showing its binding sites. 
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Figure 26.  The structure of thrombin.  The active site residues are displayed for reference.  

This image was created from the PDB file 1XMN using sybyl 7.2.   
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Figure 27.  The structure of the thrombin active site.  The active site residues and other 

important residues are displayed for reference.  This image was created from the PDB file 

1XMN using sybyl 7.2.   
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Figure 28.  Thrombin surface electron density map with electrostatic potentials.  The more 

basic the protein surface, the more red that area appears.  The active site, both exosites, the 

Na+ binding site, the 60-loop and γ-loop are all labeled.  This image was created from the 

PDB file 1XMN using sybyl 7.2.   
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1.8.4 Thrombin anion-binding exosites and ligand interactions  

The active site is not the only region on thrombin that is capable of mediating substrate 

selectivity.  Thrombin possesses two exosites that also make specific interactions with 

various substrates.  Exosite I is composed of a cluster of positively charged (basic) amino 

acids and is also known as the fibrinogen recognition site.  The  residues that constitute 

exosite I are Lys21, Arg62, Arg68, Arg70, Tyr71, Arg73, Lys106 and Lys107 [138].  

Exosite I can interact with substrate residues that are on the P2 side of the cleavable amide 

bond.  Exosite II (or heparin binding domain) is more basic then exosite I.  This highly 

cationic domain makes exosite II the region on thrombin that polyanionic heparin binds 

during the formation of the ternary AT:heparin:thrombin inhibitory complex.  The primary 

residues in exosite II are Arg89, Arg98, Arg245, Lys248 and Lys252 [138].  Thrombin 

substrate selectivity is dictated by a combination of necessary active site and exosite 

interactions.  These interactions and steric barriers are the gatekeepers to the catalytic 

serine and prevent thrombin from behaving as a promiscuous protease.  If a putative 

substrate fails to make the necessary interactions then amide hydrolysis will not occur.  All 

known natural substrates of thrombin engage at least one of the two exosites, while some 

substrates require both [140].   

Fibrinogen is an inactive procoagulant structural protein that is converted to fibrin 

by thrombin.  Fibrinogen makes contacts with thrombin’s active site and exosite I with µM 

affinity [141].  Because of the importance of exosite I in fibrinogen recognition, exosite I is 

also commonly referred to as the fibrinogen binding domain.  The residues that are 

involved in fibrinogen binding to thrombin are K36, R67, H71, R73, Y76, R77a, K81, 
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K109 and K110 of exosite I.  Additionally, residues near the Na+ binding site, the 60 loop 

and the active site are involved in fibrinogen recognition [141]. Exosite I has also been 

shown to be necessary for the recognition of protease activated receptors (PAR 1 and PAR 

4) [142], cofactors FV and FVIII [143], thrombomodulin [144], GPIbα [145], the serpin 

heparin cofactor II (HCII) [146] and hirudin [147].  Specifically, the C-terminal segment of 

hirudin makes contact with thrombin exosite I.  Of the 17 side chains in the C-terminus, 12 

of the side chains make hydrophobic or ionic interactions with thrombin (figures 8 and 9).  

The electrostatic interactions are h-Glu49 with Lys60f and Arg35, h-His51 with Glu39, h-

Asp55 with Arg73 and Lys149E, h-Glu58 with Arg77A, h-Glu65 and the C-terminus with 

Lys36 [39].  Heparin makes its nonspecific, electrostatic interactions with exosite II of 

thrombin (figures 29-31).  It has been determined that heparin binds to exosite II by 

making ionic interactions (in order of importance) with R93, K236, K240, R101 and R 233 

[148].  Additionally, exosite II is involved in the recognition of FV and FVIII [143], 

GPIbα [149] and the anticoagulant leech protein, haemadin [150].   

1.8.5 Sodium binding site on thrombin 

Thrombin is allosterically regulated by a small Na+ binding surface exposed loop.  

Thrombin has superior catalytic properties in the presence of Na+ compared to the absence 

of Na+.  The carbonyl oxygen atoms of Tyr190, Arg233 and Lys236 directly coordinate 

with Na+.  Additionally, Asp199, Glu229, Asp234 and Tyr237 have been energetically 

linked to Na+ binding [151]. 
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Figure 29.  Illustration showing heparin binding to exosite II of thrombin.   
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Figure 30.  A mixed rendering including the ribbon structure of thrombin with the exosite 

II residues displayed for reference.  This image was created from the PDB file 1XMN 

using sybyl 7.2. 
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Figure 31.  A model of heparin octasaccharide bound to thrombin exosite II. The surface 

exposed electron density of thrombin with calculated electrostatic potentials are shown. 

The more red the color, the more electropositive the region is.  This image was created 

from the PDB file 1XMN using sybyl 7.2. 
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Figure 32.  Thrombin surface electron density map with electrostatic potentials.  The more 

basic the protein surface, the more red that area appears.  The active site, both exosites, the 

60-loop and γ-loop are all labeled.  This image was created from the PDB file 1XMN using 

sybyl 7.2.   
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Figure 33.  Thrombin surface electron density map with electrostatic potentials.  The more 

basic the protein surface, the more red that area appears.  The active site, both exosites, the 

60-loop and γ-loop are all labeled.  This image was created from the PDB file 1XMN using 

sybyl 7.2.   
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1.9 Thrombin inhibition 

An observation was made that fibrinopeptide A and certain tripeptide fragments could 

inhibit thrombin [135].  This discovery represented the first lead compounds in the 

development of direct thrombin inhibitors. 

 

1.9.1 Arginine derivatives as inhibitors of thrombin 

1.9.1.1  D-Phe-Pro-Arg-chloroketone (PPACK) (75) is a selective, covalent 

inhibitor of thrombin, which contains an Arg residue at the P1 position (figure 34) [152].  

The nucelophilic Ser195 of thrombin attacks the electropositive carbon adjacent to the 

chlorine atom forming a covalent bond.  Thrombin selectivity is mediated by the tripeptide 

sequence, which is the same sequence that thrombin recognizes in fibrinopeptide A.   
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Figure 34.  PPACK bound to thrombin.  PPACK is shown as a ball and stick model.  

Ser195 and His57 are also shown.  This image was created from the PDB file 1PPB and 

sybyl 7.2. 
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1.9.1.2  DUP 714:  (76) a covalent thrombin inhibitor with a Ki= 41 pM [153].   

N
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DUP 714  

76 

1.9.1.3  Cyclotheonamide A:  (77) This natural product was isolated form a marine 

sea sponge (genus Theonella).  It is a macrocyclic peptide with a thrombin Ki= 180 nM, 

however it is more potent against trypsin and streptokinase (Ki= 23 and 35 nM, 

respectively) [154].  The β diketone forms a hemiketal with Ser195 of thrombin.  Despite 

the lack of selectivity, this represents a great lead compound.   
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1.9.1.4  Derivatives of cyclotheonamide (77) 

Table 1.  Derivatives of cyclotheonamide (77) [135].   

Derivatives of cyclotheonamide (77) 

Name # Structure Thrombin 
Ki (nM) 

Trypsin 
Ki 

(µM) 

L-370518 78 N
H

O

N

O
N
H

N
H O

O

NH2

 

0.5 1.15 

L-372460 79 

OH
N

O NH
O

NH2

 

1.5 0.86 

Derivative  
of            

L-372460 

80 

N
OH

N

O NH
O

Cl

NH2

 

0.4 N/A 

L-374087 81 NS
N
H

O

O
O

N
H

O

N

NH2  

0.5 3.2 

L-375378 82 N
H

N
N

N
H

N
O

O

NH2

 

0.8 1.8 
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1.9.2 Amidine and guanidine based inhibitors of thrombin 

1.9.2.1  Dabigatran etexilate (BIBR-1048) (84): it is the orally active prodrug 

form of Dabigatran (BIBR-953) (83) [155].  It is converted by esterases to dabigatran.  

Dabigatran (83) is a competitive, reversible inhibitor of thrombin (figure 35) [37].  Its 

thrombin Ki= 4.5 nM and its trypsin Ki= 50 nM, which is more selective then melagatran 

[155].  It represents a unique class of compounds based on a 1,2,5-trisubstituted 

benzimidazole core scaffold  [156].  Dabigatran (83) is a zwitterion that is protected at both 

ionizable sites by lipophilic groups which are capable of being hydrolyzed [156]. 
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Figure 35.  Structure of compound 83 bound to the thrombin active site.  The lipophilic 

potential is mapped on the protein surface. This image is adapted directly from [156].   
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1.9.2.2  LB-30812: (85) With a Ki= 3 pM, it is the most potent synthetic inhibitor 

to-date.  It is highly selective, but only has moderate oral activity [135]. 
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1.9.2.3  Oxyguanidines: compound 86, thrombin Ki= 11.9 nM.  Compound 87, 

thrombin Ki= 4 nM.  Both compounds have high plasma protein binding [157]. 
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1.9.2.4  Metal chelators:  this compound (88) is an amidino-benzimidazoles 

derivative.  It has a thrombin Ki= 5.6 nM in presence of Zn2+ and a Ki= 2.3 µM in the 

absence of Zn2+ [158, 159].  Zn2+ coordinates with His57 and Ser195 of thrombin and the 

two benzimidazoles of the chelator (figure 36). 
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Figure 36.  Zn2+ coordinates with His57 and Ser195 of thrombin and the two 

benzimidazoles of the chelator.  The structure of the chelator shown is similar to 88 and 

binds in a manner analogous to 88.  This image is adapted directly from [159].   
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1.9.3 Non-amidine based inhibitors of thrombin 

1.9.3.1  SSR-182289 (90):  its design is based on the argatroban (1) structure.  It is 

characterized as an oral, competitive, reversible thrombin inhibitor [160].  Compound 90 

not a prodrug and its oral bioavailability is due to its 3-amino-pyridine moiety (pKa close to 

7.5) [160].  It has good selectivity, thrombin Ki= 31 nM, while the trypsin Ki= 54µM.  It is 

also selective towards the other serine protease inhibitors including FXa (Ki= 167 µM).  

All of the Ki values for FVIIa, FIXa, plasmin, urokinase, tPA, kallikrein and aPC exceed 

250 µM [160].   
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1.9.3.2  TRI50c (91): it is a derivative of DUP 714 (76).  Its thrombin Ki= 9 nM.  

Its trypsin Ki= 1 µM and it exhibits even better selectivity versus the other serine proteases 

[161].   
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1.9.3.3  LB-30057 (92):  This DTI is a tripeptide mimic that contains a less basic 

group at the P1 position.  The amidrazonophenylalanine group confers better orally 

bioavailability over more basic moieties [162].   The thrombin Ki= 0.38 nM and it is 

considered to be selective [135].  Additional testing showed that an ortho substituted 

fluorine on the amidrazonophenylalanine ring improved oral activity [162]. 
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1.9.3.4  LB-30870 (93): it is a derivative of LB-30812 (85) with good oral activity.  

It contains a 2,5-thienylamidine as a less basic P1 moiety and also has a carboxylic acid.  

Although it is less basic than other moieties, it is still able to form strong ionic interactions 

with Asp189 (figure 37).  It has a thrombin Ki= 15 pM and a trypsin Ki= 300 pM [163].       
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Figure 37.  Compound 93 is bound to thrombin in a surface representation. The diphenyl 

moiety fits in the P4 site. Oxygen atoms are shown in red, nitrogen atoms are shown in 

blue, sulfur is shown in yellow and carbons are shown in either green or dark-gray.  This 

image is adapted directly from [163].   
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1.9.3.5  N-oxide derivatives: In compound 94, fluorine was placed on the 

benzylamide which yielded a Ki for thrombin of 2.3 nM.  It also has better solubility and 

improved oral activity [164].  Compound 95, with an N-oxide on central ring, yielded a 

thrombin Ki= 3.2 nM [165]. 
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1.9.16 Non-small molecule inhibitors of thrombin 

1.9.16.1 Theromin: described as the most potent thrombin inhibitor to date.  It is 

produced by the Rhynchobdellid leech Theromyzon tessulatum (also produces Therostasin) 

as a homodimer (14.5 kDa) composed of 67 amino acids, 16 of which are Cys.  Theromin 

is specific for thrombin and shows no activity against other serine proteases.  The thrombin 
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Ki= 12 ± 5 fM [166].  This is superior to the thrombin Ki for hirudin and Haemadin (21 fM 

and 99 fM, respectively) [167].  Although dimerization is required for maximal activity, 

individual monomers are capable of inhibiting thrombin.   

 

1.9.16.2 Haemadin: a slow, tight binding thrombin inhibitor (~5 kDa) produced by 

the Indian leech, Haemadipsa sylvestris.  Haemadin is selective for thrombin over other 

serine proteases.  The thrombin Ki= 99 ± 26 fM for native haemadin.  Recombinant 

haemadin has also been produced and the thrombin Ki is comparable (Ki= 210 ± 62 fM) 

[167].  Structural studies demonstrate that haemadin binds to both the active site and 

exosite II (figures 38 and 39) [150].   
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Figure 38.  Haemadin (green) bound to thrombin.  This image was created from the PDB 

file 1e0f using sybyl 7.2. 
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Figure 39.  Haemadin (green) bound to thrombin.  This image was created from the PDB 

file 1e0f using sybyl 7.2.   

 

 

 

1.9.16.3 Bufrudin: an anticoagulant protein (~7 kDa) derived from the salivary 

glands of the Asian leech, Hirudinaria manillensis.  Bufrudin is a potent, direct thrombin 

inhibitor with  some homology to hirudin.  The N-terminal proteolytic fragment composed 

of residues 1-47 is responsible for the thrombin inhibitory activity [118, 168]. 
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1.9.16.4 Triabin: a 142 residue (~17 kDa) anticoagulant protein derived from the 

saliva of the insect, Triatoma pallidipennis.  Recombinant triabin has been expressed in E. 

coli as well a baculovirus/insect system [169].  Triabin is a thrombin inhibitor that forms a 

noncovalent complex with thrombin, which leads to inhibition of thrombin-induced 

platelet aggregation and a prolongation of both thrombin clotting time and APTT.  The 

triabin platelet aggregation IC50= 2.6 nM, which was more potent than hirulog and the 

synthetic active site inhibitor, α-NAPAP (IC50= 280 nM and 21 nM, respectively) [170].  

The amidolytic activity of small peptide substrates by thrombin is not inhibited by triabin.  

Furthermore, triabin inhibits the cleavage of thrombin by trypsin and inhibits the effects of 

thrombomodulin on thrombin.  These results suggest that triabin interacts with exosite I of 

thrombin and not the active site.  Triabin potently inhibits the thrombin mediated 

fibrinogen conversion to fibrin (Ki= 3 pM) [169].  Triabin inhibited thrombin mediated 

arterial relaxation with an IC50= 3.2 nM, which compared favorably with hirudin (IC50= 

1.5 nM) [170].  Structurally, triabin is a single domain protein consisting of an eight-

stranded β-barrel [171].  The center of the barrel houses a hydrophobic core that also has a 

cluster of residues that form several salt bridges.  The majority of the triabin, thrombin 

exosite I interactions are hydrophobic in nature.  The side chain of thrombin Arg77 reaches 

into the hydrophobic core and makes ionic interactions with two of the triabin amino acids.  

It is clear from the crystal structure that triabin does not interfere with the active site of 

thrombin and exclusively occupies the exosite region, consistent with the previous 

experimental results [171]. 
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1.9.16.5 Bothrojaracin: an anticoagulant protein produced by the venomous South 

American snake, Bothrops jararaca.  It has a molecular weight of ~27 kDa and is 

composed of two polypeptide chains (15 and 13 kDa) that are connected via a disulfide 

linkage.  Bothrojaracin is a thrombin inhibitor that forms a noncovalent complex with 

thrombin by interacting with both exosite I and II.  This complex does not disturb or 

occlude the active site because small peptide substrates can still be hydrolyzed.  Depending 

on the thrombin concentration, bothrojaracin is capable of potently inhibiting thrombin-

induced platelet aggregation (IC50 values range from 1-20 nM).  Bothrojaracin is able to 

prolong fibrinogen clotting time.  This is due to the ability of bothrojaracin to potently 

compete with fibrin(ogen) for exosite I (Ki= 15 nM).  Additionally, bothrojaracin is able to 

inhibit thrombin binding to thrombomodulin by 87% and subsequently, bothrojaracin 

decreases the rate of protein C activation by thrombin.  Bothrojaracin is also capable of 

competing with hirudin for exosite I, indicating its potent nature [172].  The thrombin Kd= 

0.62 ± 0.2 nM for bothrojaracin and the C-terminal hirudin peptide (exosite I specific 

ligand) is capable of inhibiting this interaction (Ki= 50 ± 16 nM).  One isoform of 

thrombin, known as γ-thrombin, is characterized by having a disrupted exosite I due to 

controlled proteolysis by trypsin.  The γ-thrombin Kd= 0.30 ± 0.07 µM for bothrojaracin.  

This is substantially greater than the α-thrombin dissociation constant, indicating the 

importance of exosite I in thrombin recognition by bothrojaracin.  However, this Kd 

clearly indicates that additional areas of thrombin are involved in bothrojaracin binding.  

Bothrojaracin is able to decrease the rate of heparin mediated antithrombin inhibition of α- 

and γ-thrombin, but it has no effect on the antithrombin inhibition of α- and γ-thrombin in 
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the absence of heparin.  The presence of heparin or prothrombin fragment 2, both exosite II 

ligands, inhibited the binding of bothrojaracin to α- and γ-thrombin.  These three 

experiments taken together indicate that bothrojaracin also binds to exosite II in addition to 

exosite I.  Bothrojaracin is also able to bind to prothrombin with a Kd= 31 ± 14 nM.  This 

interaction does not require Ca2+ and it is inhibited by heparin, indicating that bothrojaracin 

binding to prothrombin is exosite II mediated.  Additionally, bothrojaracin is able to inhibit 

clot bound thrombin.  Bothrojaracin was able to inhibit clot-induced platelet activation 

with an IC50= 35 nM [173].   

 

1.9.16.6 Rhodniin: a thrombin inhibitor (103 amino acid residues, ~11 kDa) that is 

produced by the insect, Rhodnius prolixus [174].  Rhodniin is a two domain protein that 

can be expressed in a recombinant form by E. Coli.  The thrombin Ki for rhodniin and 

recombinant rhodniin is 203 ± 87 fM and 172 ± 52 fM, respectively.  The crystal structure 

of recombinant rhodniin and bovine thrombin shows that the N-terminal rhodniin domain 

binds to the active site of thrombin in a substrate-like manner.  The reactive site loop of the 

N-terminal domain (Cys6-Arg14) binds in the thrombin active site, with the His10 residue 

binding in the S1 pocket by making hydrogen bonds and ionic interactions with Asp189 

and Glu192.  This appears to be the first example of a His residue acting as a P1 residue 

[175].  The scissile peptide bond is His10-Ala11 of rhodniin and it appears to remain intact 

in the thrombin complex.  The His10 carbonyl is located in the oxyanion hole and makes 

hydrogen bond interactions with the backbone nitrogens of Gly193 and Ser195.  The C-
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terminal domain of rhodniin binds to exosite I through numerous electrostatic interactions 

[175].    

 

1.10 Dual serine protease inhibitors 

 The notion of inhibiting multiple steps in the process of coagulation has been 

employed by blood sucking animals for millions of years.  The medicinal leech, Hirudo 

medicinalis, produces the potent thrombin inhibitor hirudin as well as a prostaglandin-like 

compound that inhibits platelet aggregation [61].  The soft tick Ornithordus moubata 

produces three anticoagulants, ornithodrin, TAP and moubatin, which inhibit thrombin, 

FXa and platelet aggregation, respectively [61].  Strong evolutionary pressure has been 

placed on a blood sucking species’ ability to thwart the procoagulant systems of its host.  It 

seems logical that perhaps the best way to anticoagulate blood in patients, is to use dual 

inhibitors of coagulation.  A dual inhibitor of coagulation would be a single synthetic 

molecule or natural product that is capable of inhibiting two of the serine proteases of the 

coagulation cascade.  The alternative to this would be the separate development of two 

selective serine protease inhibitors that are co-administered.  This is obviously not as cost 

effective because of the need for individual preclinical and clinical studies as well as 

combined studies [61].  Dual inhibitors are already being used in anticoagulation as well as 

in the treatment of cardiovascular and renal pathologies.  Unfractionated heparin (UFH) is 

capable of inhibiting both thrombin and FXa by activating antithrombin [61].  A class of 

drugs known as vasopeptidase inhibitors are dual inhibitors that act on both the 
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angiotensin-converting enzyme (ACE) and neutral endopeptidase,  which are used to treat 

diseases of the cardiovascular and renal systems [176].  

 

1.10.1 Dual thrombin and FXa inhibitors 

These inhibitors block preexisting thrombin as well as prevent the formation of 

new thrombin.  The thrombin active site is larger and more hydrophobic, than the FXa 

active site.  Yet, both enzymes have similar S1 pockets and their difference in specificity is 

best determined by their S2 pockets.  Thrombin has a YPPW loop that is compact and 

rigid, which creates a small hydrophobic pocket [57], while the S2 site of FXa is blocked 

by Y99, which prevents bulky groups from binding that location [177].  The S3 pockets for 

both enzymes accommodate hydrophobic bulk, while in terms of ionic character; only the 

S3 pocket of FXa has some electronegative groups.  Thus, FXa inhibitors that contain both 

hydrophobic and cationic substituents fit in the S3 binding pocket [92, 129].  Because, 

trypsin has an active site that is more accommodating than thrombin selectivity of dual 

thrombin/FXa inhibitors over trypsin is a major challenge. 
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1.10.1.1 1-methylbenzimidazole compounds:   

1.10.1.1.1 BIBM1015 (96): Thrombin Ki= 20 nM, FXa Ki= 15 nM, trypsin Ki= 102 

nM [178].   
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1.10.1.1.2 BIBR830ZW (97): Thrombin Ki= 4.8 nM, FXa Ki= 160 nM [61]. 

N

N

N
HN

S
O

NH

NH2

OH

O
O

N

BIBR830ZW
 

97 

 

 

 

 

 

 



www.manaraa.com

117 

1.10.1.2 1,2,5-trisubstitiuted benzimidazole scaffold:  

1.10.1.2.1 BIBR 953 (98):  Thrombin Ki= 4.5 nM, FXa Ki= 3760 nM.  By adding 

bulk to the S1 position, FXa activity is removed while thrombin potency is retained [156]. 
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1.10.1.3 Oxazolpyridine series (99): Thrombin Ki= 0.04 nM, FXa Ki= 3.9 nM, low 

oral activity [179]. 
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1.10.2 Dual FVIIa and FXa inhibitors 

The greatest difficulty for making these inhibitors is that trypsin is less specific 

than the coagulation proteases, primarily because of its larger active site [59].  

Amplification is a major component of the coagulation cascade, so it is logical to design 

compounds that inhibit more than one enzyme.  Specifically, it is better to inhibit the 

enzymes that are directly linked to each other within the cascade [61].  The S1 pockets of 

all three enzymes are similar in shape but differences are also present.  FVIIa has a S190 

while thrombin and FXa have A190 [129, 178].  The greatest variation is in the S2 pocket.  

FVIIa has a small cavity in S2 while FXa is blocked by Y99 and thrombin has partial 

blockage by L99.  The transition between S2 and S3 is well defined in FVIIa [180].  By 

inhibiting enzymes earlier in the pathway, clot formation can be prevented with the 

bleeding risks associated with thrombin inhibition.   

 

1.10.2.1 2’-sulfamoyl and 2’-methylsulfamoyl substituted biphenyl group series:  

These compounds contain a benzamidine moiety, a linker and a biphenyl moiety.  The best 

compound is compound 100, with a factor VIIa and factor Xa IC50 value of 13 nM and 20 

nM, respectively [61].  Compound 100 has a 2-phenylacetamide linker and a 2’-sulfamoyl 

as the biphenyl.  The best 2’-methylsulfamoyl of this series is compound 101 with a factor 

VIIa and factor Xa IC50 value of 46 nM and 110 nM, respectively.  Compound 102 has 2’-

methylsulfamoyl but the benzamidine is replaced by neutral p-chlorophenyl [61].  This is 

to improve pharmacokinetics since the benzamidine leads to poor oral bioavailability.  The 

FVIIa and FXa IC50 values for this compound are 65 nM and 86 nM, respectively. 
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1.10.2.2 Morpholin-4-ylphenyl (103):  FVIIa IC50= 22 nM, FXa IC50= 34 nM. [61]. 

N
H

N
H

N
O

O

NH NH2

MORPHOLIN-4-YLPHENYL  

103 

 

1.10.2.3 2-oxo-piperidin-1-ylphenyl (104):  FVIIa IC50= 14 nM, FXa IC50= 32 nM. 

[61]. 
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1.10.2.4 2-oxo-pyrolidin-1-ylphenyl (105): FVIIa IC50= 65 nM, FXa IC50= 39 nM. 

[61]. 
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1.10.2.5 Semicarbazide derivatives:  Additional structural modifications found that 

semicarbazide derivatives were also equipotent [59].  Compound 106 has a factor VIIa and 

factor Xa IC50 value of 9.8 nM and 16 nM, respectively.  Compound 107 has a factor VIIa 

and factor Xa IC50 value of 5.1 nM and 8.6 nM, respectively. 
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1.10.2.6 5-aminoindole series: Compound 108 has better selectivity for other serine 

proteases but compound 109 is more potent for FXa.  The affinity values for compound 

108 are FVIIa Ki = 3 nM and FXa Ki = 60 nM.  The affinity values for compound 109 are 

FVIIa Ki = 3 nM and FXa Ki = 15 nM [61].   
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1.10.2.7 Carbohydrate derivative (110):   These structures contain two 

benzamidine rings connected by a carbohydrate linker.  It is able to inhibit both proteases 

but the linker must be attached at both meta positions in order to achieve nanomolar 

potency [59].  The most potent structure has a factor VIIa and factor Xa IC50 value of 100 

nM and 150 nM, respectively. 
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1.10.2.8 Neutral/less basic inhibitors:  Instead of making a benzamidine prodrug, it 

is possible to change to a less basic or neutral group but still achieve active site directed 

inhibition [59].  The best example of these compounds (111) has a factor VIIa and factor 

Xa IC50 value of 99 nM and 58 nM, respectively.   
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1.10.3 Dual FVIIa and thrombin inhibitors 

This unique inhibitor, dysinosin A (112), is a natural product derived from a marine 

sponge (family Dysideidae).  Its FVIIa Ki= 108 nM and Thrombin Ki= 452 nM [181].  The 

guanidine moiety occupies the S1 pocket.   
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1.10.4 Dual inhibitors of FIXa and FXa 

These inhibitors will effectively block the intrinsic cascade while leaving the extrinsic 

cascade intact.  An initial screen identified an amidinoindole inhibitor (113) with a FIXa 

Ki = 66 nM and a FXa Ki = 0.63 nM [182].   
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From this lead (113), a series of 5-amidino-benzo[b]thiophene compounds were 

synthesized (114).  Based on docking studies, the 5-amidinoindole did not fit well into the 

FIXa active site while it fit extremely well into FXa.  The 5-amidinoindole group forms a 

hydrogen bond with Ser195 in FXa but not FIXa.  The hydrogen bond with Ser195 is 

responsible for the 1000-fold difference in the initial lead structure.  The introduction of a 

5-benzo[b]thiophene group eliminates that specific hydrogen bond in FXa and the potency 

becomes more equivalent [182].  For 114, the Ki for FIXa becomes 74 nM and the Ki for 

FXa becomes 47 nM. 
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Chapter 2: Rationale  
 

2.1 Background  

The clinical prevalence of thrombosis in several medical conditions creates a market for 

anticoagulants, which reached around $4 billion worldwide in 2004 [183].  Thrombotic 

disorders are the underlying cause of 38% of all non-communicable disease-related deaths 

worldwide [184].  Examples of these disorders include pulmonary embolism, deep-vein 

thrombosis, disseminated intravascular coagulation, acute myocardial infarction, unstable 

angina, cerebrovascular thrombosis, and others.  Approximately 576,000 new cases of 

deep vein thrombosis (DVT) and pulmonary embolism (PE), two common thrombotic 

conditions, occur in the U.S. every year [185]. Additionally, thrombotic disorders are ~3 

times more likely in people with cancer [186].  Anticoagulant drugs are used in the 

treatment and prevention of thromboembolic disorders. The most widely used 

anticoagulants today include the heparins (unfractionated heparin and low molecular 

weight heparin) and the coumarins (warfarin).  The anticoagulant, unfractionated heparin 

(UFH), mediates its effect by accelerating the inactivation of thrombin and FXa, in the 

presence of antithrombin [187]. Low-molecular-weight heparins (LMWHs), introduced in 

the mid-1990s, have reduced side-effects, yet are still associated with risk of bleeding, 

variable patient responses and heparin-induced thrombocytopenia (HIT) [56]. Recently, the 

design of a five residue pentasaccharide, fondaparinux, which displays absence of HIT and 

 128 



www.manaraa.com

129 

minimal bleeding, has been approved for use in patients [188]. Yet, the therapy is not cost-

effective because fondaparinux synthesis is elaborate, laborious and low yielding.  Newer 

anticoagulant agents have been introduced, including the hirudins (lepirudin, desirudin and 

bivalirudin), the pentasaccharides (fondaparinux and idraparinux), and the peptidomimetic 

small molecules (argatroban, dabigatran, ximelagatran, razaxaban and DX9065a) [21]. 

However, these new anticoagulation therapies are hindered by a significant number of 

adverse reactions including enhanced bleeding risk, immunological reaction, genetic 

variation in metabolism, food or drug interactions and liver toxicity. In addition, problems 

such as patient-to-patient response variability, narrow therapeutic index, inadequate 

duration of action, poor oral bioavailability, the need for frequent coagulation monitoring, 

and high cost to benefit ratio further complicate their effective use in the treatment of 

thrombotic conditions.  We reasoned that to reduce the problems associated with the 

current anticoagulation therapy, molecules with a radically different structure from all the 

current agents (the heparins, warfarins, hirudins, and the peptidomimetics) need to be 

discovered.  This idea is based on the concept that structure dictates function.  The 

structure of the anticoagulant mediates its interaction with its appropriate drug target.  

Three such examples are heparin, hirudin and argatroban.  Heparin contains a 

pentasaccharide sequence, which binds and activates antithrombin.  Hirudin has a highly 

evolved tertiary structure that specifically interacts with the active site and exosite I of 

thrombin.  Argatroban (1) has an Arg residue side chain that anchors it in the thrombin 

active site.  However, the structure of an anticoagulant also mediates undesirable 

interactions, causing the drug’s side effect profile and dictating its route of administration.  
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Heparin’s structural heterogeneity causes variable inter- and intra-patient responses 

because each dose is structurally different from every other dose (like a snowflake) [56].  

Heparin’s nonspecific binding to platelet factor 4 (PF4) creates an antigenic epitope that 

induces an immunologic response resulting in the formation of antibodies against the 

complex.  This in turn causes HIT [189].  Hirudin’s highly evolved tertiary structure binds 

so tightly to thrombin that is essentially irreversible and can not be displaced by an 

antidote, leading to an increased bleeding risk [38].  Since it is a foreign peptide, it is 

extremely immunogenic [38].  Argatroban’s Arg side chain has a high pKa, which means it 

will be ionized in the GI tract and therefore not orally bioavailable [45].  To design better, 

more cost-effective, and possibly orally active anticoagulants, we looked for chemical 

structures that would be structurally different from all current anticoagulants, easily 

synthesized and amendable to prodrug design.   

 

2.2 New antithrombin-based anticoagulants 

Over the last three decades, major effort has focused on discovering anticoagulants that are 

heparin-based derivatives. These include natural polysaccharides, synthetically modified 

heparins and synthetic oligosaccharides [187]. Our laboratory has advanced the concept 

that non-heparin molecules, which are synthetic and sulfated, may be designed to function 

as activators of antithrombin [190-192].  This work has led to the design of highly sulfated 

bicyclic-unicyclic molecules, which activate antithrombin and accelerated inhibition of 

FXa [190-192].  These molecules are attractive because they are not polysaccharide-based 

and they utilize conformational activation of antithrombin as the mechanism of activation.   
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Our laboratory reasoned that antithrombin activation should also be possible with non-

sulfated molecules based only on carboxylic acid groups. 

As a proof of the principle, linear polyacrylic acids 

(PAA) (115) were found to bind antithrombin and 

significantly accelerate the inhibition of FXa and 

thrombin.  PAAs are simple, linear, organic polymers 

containing only one functional group, the carboxylic acid moiety [193, 194].  They bear no 

structural resemblance to heparin and do not contain sulfate groups.  A specific advantage 

of the carboxylic acid group is its feasibility of conversion to a prodrug form for oral 

delivery.  Yet, PAAs bind antithrombin with poor affinities under physiological conditions, 

which precludes their use as anticoagulants [193, 194].    
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2.3 Sulfated Dehydropolymers (DHPs) 

The absence of non-ionic binding forces in antithrombin-PAA interactions results in weak 

binding under physiological conditions and their ability to chelate of Ca+2 ions nullifies 

their anticoagulant activity in APTT assays [193, 194].  Thus, we sought a scaffold with 

carboxylate and sulfate groups that 1) can bind to antithrombin, FXa and thrombin 2) that 

does not chelate Ca+2 ions; 3) that shows non-ionic binding in addition to electrostatic 

binding; and 4) that are amenable to structural modifications for introducing oral activity in 

the future. Our rationale was that appropriate positioning of carboxylate and sulfate groups 

should not favor Ca+2 binding, should favor tight binding to antithrombin and should afford 

orally active synthetic prodrugs. 
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 Dehydropolymers (DHPs), from cinnamic acid derivatives meet the above criteria.  

Synthesis of these polymers was inspired by the biosynthesis of lignin, an abundant natural 

plant product assembled through enzymatic-oxidative coupling of phenyl-propenoid 

radicals.  DHPs, the synthetic in vitro version of natural lignins, are assembled through 

horseradish peroxidase catalyzed coupling of cinnamyl radicals [195-197]. Furthermore, 

the intermonomeric linkages of DHPs have been structurally characterized [198-199].   

 To design better, more cost-effective, and possibly orally active anticoagulants, we 

have synthesized a new class of anticoagulant molecules using a chemo-enzymatic 

approach.  Synthetic lignins, referred to as DHPs, are obtained using enzymatic coupling 

of cinnamyl radicals and can possess several different inter-monomer linkages.  In addition 

to micro-heterogeneity, the free radical coupling mechanism generates polydispersity 

within the DHP mixture.  These variations introduce significant structural diversity, which 

is necessary for rapid scaffold evaluation.  Our DHPs were prepared through peroxidase-

catalyzed oxidative coupling of the commercially 

available 4-hydroxycinnamic acids, caffeic acid (CA), 

ferulic acid (FA) and sinapic acid (SA) (116).  We have 

discovered that chemo-enzymatically synthesized lignins, 

represented by three sulfated dehydropolymer (DHP) 

molecules, named CDs, FDs and SDs, possess extremely 

interesting anticoagulant properties and a novel 

mechanism of action.    

CA: R = OH;   R’ = H
FA: R = OMe; R’ = H
SA: R = OMe; R’ = OMe
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 These DHPs are designed to mimic heparin.  The oligomeric and polyanionic 

nature of individual DHP molecules, as well as the polydispersity and micro-heterogeneity 

present in a DHP mixture is similar to that of heparin.  The ability of 4-hydroxycinnamic 

acids to accept sulfate groups made them especially desirable for designing heparin 

mimics.  Heparin is a series of six-membered rings, linked into a polymer and then it is 

enzymatically modified (sulfates added).  DHPs are created by enzyme mediated free 

radical coupling, followed by chemical modification (sulfates added).  The aromatic ring in 

a cinnamic acid is approximately the same size as a heparin monomer.  However, DHPs 

have a planar geometry while carbohydrates have various conformations.  Furthermore, the 

intermonomeric linkages between cinnamic acid monomers are slightly longer than the 

linkages in heparin.  The cinnamic acid backbone is substantially more hydrophobic in 

comparison to the carbohydrate backbone of heparin.  The chapters that follow detail the 

synthesis, structural characterization, mechanism of action, in vitro and ex vivo potency of 

our novel, sulfated DHPs.  Thus, these molecules were synthesized and studied for 

anticoagulant properties.  
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Chapter 3: Novel Chemo-Enzymatic Oligomers of Cinnamic Acids as 
Direct and Indirect Inhibitors of Coagulation Proteinases  

 

3.1 ABSTRACT 

Thrombin and factor Xa, two important procoagulant enzymes, have been prime targets for 

regulation of clotting through the direct and indirect mechanism of inhibition. Our efforts 

on exploiting the indirect mechanism led us to study a carboxylic acid-based scaffold, 

which displayed major acceleration in the inhibition of these enzymes [193, 194]. This 

work advances the study to chemo-enzymatically prepared oligomers of 4-

hydroxycinnamic acids, DHPs, which display interesting anticoagulant properties. 

Oligomers, ranging in size from tetramers to pentadecamers, were prepared through 

peroxidase-catalyzed oxidative coupling of caffeic, ferulic and sinapic acids, and sulfated 

using triethylamine–sulfur trioxide complex. Chromatographic, spectroscopic, and 

elemental studies suggest that the DHPs are heterogeneous, polydisperse preparations 

composed of inter-monomer linkages similar to those found in natural lignins. 

Measurement of activated thromboplastin and prothrombin time indicates that both the 

sulfated and unsulfated derivatives of the DHPs display anticoagulant activity, which is 

dramatically higher than the reference polyacrylic acids. More interestingly, this activity 

approaches that of low-molecular-weight heparin with the sulfated derivative showing ~2–

3-fold greater potency than the unsulfated parent. Studies on the inhibition of factor Xa and 
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thrombin indicate that the oligomers exert their anticoagulant effect through both direct 

and indirect inhibition mechanisms. This dual inhibition property of 4-hydroxycinnamic 

acid-based DHP oligomers is the first example in inhibitors of coagulation. This work puts 

forward a novel, non-heparin structure, which may be exploited for the design of potent, 

dual action inhibitors of coagulation through combinatorial virtual screening on a library of 

DHP oligomers. 

 

3.2 INTRODUCTION 

Thrombin and factor Xa, two critical enzymes of the coagulation cascade, have been 

targets of anticoagulation drug design for a long time [189]. Both enzymes can be inhibited 

directly or indirectly. Traditional anticoagulants, including heparin, low-molecular-weight 

heparin (LMWH) and warfarin, are indirect inhibitors, which mediate their effects through 

an intermediary co-factor, such as antithrombin or vitamin K. For the past 7 decades these 

indirect inhibitors have been the mainstay of anticoagulant therapy. Yet, they suffer from 

several limitations, such as enhanced bleeding risk, unpredictable response, heparin-

induced thrombocytopenia and lack of inhibition of clot-bound thrombin. 

In contrast to indirect inhibition, direct inhibition of thrombin and factor Xa has 

been thought to be a better alternative, which promises to offer the important advantage of 

inhibition of both circulating and clot-bound thrombin. A prototypic member in this class 

of inhibitors is hirudin, which targets the active-site and exosite I of thrombin, and several 

derivatives of this peptide are now clinically available [37]. Intensive efforts are also being 

made to develop the first orally bio-available direct thrombin inhibitor. These are small 
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molecule pro-drugs that target the active site of these enzymes. However, challenges with 

these molecules include establishing enzyme binding affinity that is not associated with 

excessive bleeding, achieving inhibition of both clot-bound and unbound proteinases, and 

avoiding liver toxicity [37].

The traditional anticoagulant, heparin or LMWH, is an anticoagulant of choice 

because of its good efficacy and easy availability. It is a linear co-polymer of glucosamine 

(GlcNp) and iduronic acid (IdoAp) residues linked in a 1 4 manner [27]. Yet, heparin is a 

complex, heterogeneous, polydisperse molecule. Further, the high sulfation level of 

heparin generates massive negative charge density, thereby introducing an ability to bind 

to a large number of proteins in the plasma [29], a probable cause for its some of its side-

effects. 

To reduce the limitations of heparin therapy, we have focused on designing 

scaffolds that possess much lower anionic character, have more hydrophobic nature, and 

yet retain the function of heparin [190-194]. In the process, we have designed some small 

sulfated flavonoids that utilize the antithrombin conformational activation mechanism for 

factor Xa inhibition [190-192] and have studied polymers of acrylic acid that utilize the 

bridging mechanism for inhibiting thrombin [193, 194]. While our sulfated flavonoids 

displayed some 20-fold acceleration, polyacrylic acids (PAAs) displayed a massive 300–

1,100-fold acceleration in antithrombin-dependent inhibition of factor Xa and thrombin. 

Yet, PAAs were not likely to be useful as anticoagulants because of their poor 

antithrombin binding affinity and ability to chelate Ca2+ ions under physiological 

conditions [194]. We reasoned that both these problems could be addressed simultaneously 
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through the introduction of two features – a more rigid hydrophobic backbone and some 

sulfate groups – in the PAA scaffold. 

Scaffolds of the size of heparin (or LMWH) that simultaneously possess these two 

properties are difficult to find. Other than natural polysaccharides, only a couple of natural 

macromolecular structures are known – condensed tannins and lignins – that could 

possibly be simultaneously hydrophobic and anionic. Whereas condensed tannins, or 

proanthocyanidins [200, 201] are polymers of either flavan-3-ol, or flavan-4-ol, or flavan-

3,4-diol monomers, lignins are polymers of phenylpropanoid monomers [202, 203]. The 

presence of aromatic skeleton and phenolic, as well alcoholic, groups in both these 

structures ensures a combination of hydrophobic and anionic character. 

We chose to explore lignin derivatives in view of the considerable literature 

available on the chemo-enzymatic synthesis of lignins [195, 204]. Synthetic lignins, also 

called dehydrogenation polymers (DHPs), are prepared from cinnamyl alcohol monomers 

using oxidative radical coupling and possess at least four types of inter-monomer linkages, 

including β-O-4 and β-5 (figure 40, page 164). These variations introduce significant 

heterogeneity and complexity in the macromolecule, thereby generating high structural 

diversity necessary for rapid evaluation of structures. 

We describe our initial results with oligomers of cinnamic acid as novel 

coagulation inhibitors. The DHP oligomers were prepared in good yields through chemo-

enzymatic oxidative coupling of 4-hydroxycinnamic acids [204, 205]. The DHPs prolong 

activated thromboplastin and prothrombin time, APTT and PT respectively, with 

approximately equal potency as LMWH. Preliminary studies suggest that the DHPs inhibit 
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factor Xa and thrombin in an antithrombin –dependent and –independent manner 

suggesting an interesting dual inhibition approach. While in depth studies are necessary to 

understand specific structural and mechanistic aspects of these DHPs, our results put 

forward a potent, non-heparin structures, the ‘lignin carboxylates’, for rational, 

anticoagulant drug design. 

 

3.3 RESULTS 

3.3.1 Synthesis of Dehydrogenation Polymers 

Three cinnamic acid derivatives, caffeic acid, ferulic acid and sinapic acid, were chosen for 

homo-polymerization primarily due to their ability to hydrogen bond, form ionic 

interactions and undergo sulfation. HRP–catalyzed oxidation of these monomers generates 

radical intermediates, especially I1 and I2 (figure 40), which couple with monomers to give 

β-O-4- and β-5-linked dimeric units. These units undergo chain extension with radicals, 

such as I1 and I2, to give DHPs. Simultaneously, side reactions, such as decarboxylation, 

may occur to give variant oligomers. The DHPs were judged to be heterogeneous through 

size-exclusion and reverse-phase chromatographies (not shown). 

To determine the average molecular weight of these polymers, we synthesized their 

acetylated derivatives CDAC, FDAC and SDAC and utilized non-aqueous SEC, a technique 

found useful for lignins and cinnamyl alcohol-based DHPs [206]. CDAC and SDAC gave 

comparable SEC chromatograms, while FDAC displayed a significant shift toward higher 

molecular weight species (Figure 42, page 166). The peak-average molecular weight (MP) 

of acetylated CD, FD and SD was found to be 1,180, 2,480 and 1,190 Da, respectively, 
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while the number-average molecular weight (MN) was 880, 1,870, and 1,020 Da, 

respectively, suggesting unsymmetrical distribution of higher and lower molecular weight 

chains. The weight-average molecular weight (MW) was found to be 2,800, 3,650, and 

2,990 Da, respectively, indicating that on average these oligomers are reasonably similar. 

Yet, the proportion of smaller chains is higher for both CDAC and SDAC than for FDAC. 

Using the molecular weight of acetylated monomers, the average oligomer is estimated to 

be between 4–13-mer for CD, 8–15-mer for FD, and 4–11-mer for SD. 

The DHPs were sulfated using Et3N:SO3 complex under conditions established 

earlier to obtain sulfated oligomers CDS, FDS and SDS [192].  In this reaction, free phenolic 

and alcoholic groups are converted into organic sulfate groups resulting in an anionic 

oligomer. To assess the level of sulfation in these oligomers, elemental composition was 

determined. The C, H, and O composition of CD was found to be similar to SD, while that 

of FD, especially in the proportion of carbon, is significantly different (Table 2, page 157-

158). Likewise, CDS and SDS compositions are similar, and unlike that of FDS. Calculation 

of the elemental composition of these oligomers assuming a homogeneous decamer with β-

O-4 inter-monomer linkage indicates striking similarity to the observed composition for 

FD and FDS oligomers. In contrast, the observed composition for the other two DHP 

derivatives does not match the homogeneous decamer calculation (Table 2, page 157-158). 

This suggests greater proportion of structurally similar oligomers in FD and FDS 

preparations, while CD and SD (also CDS and SDS) are expected to be more 

heterogeneous. The sulfur proportion in the sulfated DHPs remains fairly consistent in the 

range of 4.4 to 5.3 %, which corresponds to the presence of nearly 1 sulfate group every 
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2.5–3.3 monomers. Among the three derivatives, FDS is the least sulfated preparation 

(Table 2, page 157-158). 

An important question to address with regard to these heterogeneous and 

polydisperse oligomers was the ease and reproducibility of their synthesis. In multiple 

attempts on a several different scales (up to a gram of the oligomer), the polydispersity of 

samples as judged by SEC remained consistent suggesting a fairly reproducible process. In 

addition, the two-step synthesis is a controlled oligomerization process with greater than 

60% isolated yield. 

 

3.3.2 Characterization of Dehydrogenation Polymers (DHPs) 

The IR spectra of sulfated and unsulfated DHPs (Figure 43, page 167) show the presence 

of aromatic structures (1,550 cm-1), as expected. In addition, sulfated DHPs show peaks at 

1,080 and 1,110 cm-1 characteristic of sulfate stretches. The 1H NMR spectra of DHPs 

show the presence of broad peaks indicating polydispersity (not shown). In contrast, 

quantitative 13C NMR spectra, recorded with inverse gated decoupling sequence, are more 

revealing (Figure 43, page 167). The 13C NMR spectra of dehydro-dimers and -trimers of 

cinnamic acid derivatives as well as lignin samples suggests that the 165 – 172 ppm signals 

belong to carbonyl carbon of carboxylic acid, the 110 – 150 ppm signals belong to 

aromatic and vinylic carbons, the 65 – 100 ppm signals are due to alkoxy carbons Cα and 

Cβ, while the signal between 56 – 60 ppm is because of the –OCH3 group. Yet, significant 

differences exist between the oligomers. For example, whereas Cα and Cβ peaks are 

prominent in the 65 – 110 ppm region for SD and CD (Fig. 43A and 43C, page 167), they 
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are nearly absent in this region for FD (Figure 43B, page 167). In addition, the carbonyl 

carbon intensities for SD and CD are ~25% and 10% lower than that for FD, respectively. 

Thus, two of the common side-reactions in oxidative coupling – decarboxylation of –

COOH groups followed by reaction with a phenoxy radical – seem to have occurred less 

for FD. Although some decarboxylation is noticeable for CD, the presence of a prominent 

signal at 68 ppm and the much lower dispersion in the aromatic region indicative of 

minimal vinylic composition suggests greater possibility of several different types of inter-

monomeric linkages (Figure 40, page 164). In contrast, 13C NMR studies, in combination 

with elemental analysis, suggest that oligomer FD consists primarily of inter-monomeric 

linkages of β-O-4 type. 

Mass spectrometry is an important technique used in elucidation of fine structure of 

polyphenol polymers, although the heterogeneity and complexity of these molecules 

presents a formidable challenge [207].  Attempts to identify higher oligomeric chains have 

not yielded much success because of instability of the polyphenolic structure even under 

mild ionization conditions, such as ESI [207].  We explored the applicability of MS to 

these 4-hydroxycinnamic acid oligomers to possibly identify the inter-monomer linkages 

and confirm the spectroscopic results. The ESI-MS spectrum of FD in the negative ion 

mode is shown in Figure 44A (page 168). Mass peaks were observed primarily in the 

region 150 – 400 m/z, yet, smaller peaks were observable between 400 and 700 m/z (inset 

in Figure 44A, page 168). Mass peaks at p1 (681 m/z), p2 (637 m/z) and p3 (593 m/z) can 

be ascribed to singly charged tetramers of FD that have sequentially lost 2, 3 and 4 

carboxylic acid moieties, respectively, while those at 533, 489, and 445 m/z (peaks p4, p5, 
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and p6) most likely arise due to a singly-charged trimer that has lost 1 through 3 CO2, 

respectively (Figure 44B, page 168). Likewise, peaks p7 (385), p8 (341) and p9 (297) are 

due to [M2]-1, [M2-CO2]-1 and [M2-2CO2]-1 mass fragments, while p10 (193) is the singly-

charged ferulic acid monomer. This analysis supports the result that HRP-catalyzed 

oxidative coupling of FD gives β-O-4-type inter-ferulic acid linkages with the presence of 

vinylic double bonds in the oligomer (Figure. 44B, page 168). Yet, this interpretation does 

not completely exclude other inter-monomer linkages, which may be present in smaller 

proportion as can be noted from the large number of as yet uncharacterized peaks in the 

ESI-MS. 

A final point regarding the structure of our DHPs is that current spectroscopic data 

is insufficient to make definite stereochemical interpretation regarding olefinic linkages as 

well as substitution at the Cβ position (Figure 40, page 164). The biosynthesis of lignins is 

largely considered to be achiral [205] and hence, we speculate that multiple isomers are 

present in the mixture of our oligomers. 

 

3.3.3 Prolongation of Clotting Time 

Prothrombin and activated partial thromboplastin time (PT and APTT) reflect the activity 

of the extrinsic and intrinsic pathways of coagulation and thus, are measures of the 

anticoagulation state of the plasma. PT and APTT were measured with citrated human 

plasma at six to eight concentrations of unsulfated and sulfated DHPs, while PAA, (+)-CS 

and LMWH (Figure 41, page 165) served as reference molecules. All samples showed 

considerable concentration-dependent prolongation of clotting time (Figure 45, page 169) 
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characterized by a rapid increase in time to clot. The anticoagulant activity is typically 

defined in terms of the concentration of the anticoagulant needed for doubling the normal 

plasma clotting time. A 2-fold increase in prothrombin time required plasma concentration 

of unsulfated DHPs in the range of 98–212 µg/mL (Table 3, page 159-160). This 

concentration decreased to 42–105 µg/mL, or nearly 2–3-fold lower, for sulfated DHPs. In 

contrast, for the reference molecules PAA and (+)-CS, a massive 4259 and 927 µg/mL 

concentration was required to achieve doubling of PT, while for a LMWH (from Sigma) 

142 µg/mL was sufficient. 

In a similar manner, doubling of APTT required ~25–40 µg/mL and ~13–23 µg/mL 

of unsulfated and sulfated DHPs, respectively. In contrast, the LMWH brought about 

2×APTT at 5.9 µg/mL. These results suggest that unsulfated DHPs are less potent than 

their sulfated counterparts. In addition, a trend is discernible. Except for APTT with 

unsulfated DHPs, CD appears to be consistently more potent than FD, which in turn is 

better than SD and this trend holds for their sulfated derivatives. 

Assuming homogeneous CD, FD and SD preparations with MW of 2,800, 3,650, 

and 2,990 Da, respectively (Table 2, page 157-158), ~35–71 µM and ~15–35 µM of 

unsulfated and sulfated oligomers, respectively, would be needed for 2×PT. These 

concentrations change to 9–11 µM and 5–8 µM, respectively, for a doubling of APTT. In 

comparison, a homogeneous chain of PAA (MW 2280 Da) will have to be present at 1870 

µM for 2×PT, or at nearly 25–125-fold higher level over DHPs. For our small molecule 

reference, (+)-CS,  ~1140 and 350 µM will be needed for doubling of PT and APTT, 
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respectively, which represents ~16–76-fold and ~32–70-fold higher levels than DHPs. But 

more importantly, the LMWH (MW = 5,060 Da) gives values of 28 µM and 1.2 µM for 

2×PT and 2×APTT, respectively. Thus, the concentration of DHPs, especially sulfated 

DHPs, required to double PT are similar to LMWH, while for doubling of APTT ~3–10-

fold more sulfated DHPs are required. 

 

3.3.4 Direct and Indirect Inhibition of Coagulation Proteinases 

To investigate whether our DHPs affect proteolytic activities of coagulation proteinases 

present in plasma, of which factor Xa and thrombin are probably the most important, we 

measured residual enzymatic activity of the two enzymes following incubation for a 

defined time period with varying concentrations of DHPs in the presence and absence of 

antithrombin. The proteinase activity was determined under pseudo-first order conditions 

in a spectrophotometric assay using chromogenic substrates Spectrozyme FXa and TH for 

factor Xa and thrombin, respectively. As the concentration of DHP increases the residual 

proteinase activity decreases in a sigmoidal manner (Figure 46, page 170), which can be fit 

to a standard dose-dependence equation to derive the IC50 values (Table 3, page 159-160). 

All unsulfated DHPs studied inhibited both factor Xa and thrombin in the absence 

of antithrombin with an IC50 value in the range of 0.2–2.8 µg/mL or 0.06–0.90 µM (Figure 

46, Table 3, pages 170 and 159-160, respectively). CD was found to be ~5–7-fold more 

effective than FD and SD. The direct inhibitory activity of the DHPs increases 

significantly on sulfation with IC50 values in the range of 0.07–0.84 µg/mL or 20–250 nM. 

This suggests that sulfation of all three oligomers improves direct inhibition of both factor 
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Xa and thrombin nearly 3–4-fold. In contrast, PAA displayed no direct factor Xa or 

thrombin inhibitory activity in the presence of buffer containing CaCl2 (Table 3, page 159-

160). 

Indirect inhibition by sulfated DHPs in the presence of antithrombin yields IC50 

values of 60–140 nM (0.19 – 0.56 µg/mL) against factor Xa and 50–80 nM (0.16–0.31 

µg/mL) against thrombin (Table 3, page 159-160). Although these activities indicate good 

indirect inhibition potency of the sulfated DHPs, closer inspection of the data indicates 

some differences and complexities. The IC50 value decreases ~2-fold for SDS in the 

presence of antithrombin from that in its absence. The decrease in IC50 suggests that the 

indirect and direct inhibition pathway complement each other for SDS. In contrast, the IC50 

value increases ~2–3-fold for CDS and FDS in the presence of antithrombin from that in its 

absence (Table 3, page 159-160). Thus, for CDS and FDS the two pathways appear to either 

compete with each other or induce side-reactions that prevent additive effects (see 

Discussion section). These mixed inhibition results indicate interesting differences 

between these three apparently similar oligomers. 

An important difference elucidated in these studies is the level of enzyme inhibition 

induced with each oligomer. Figure 7 shows that the relative residual proteinase activity 

decreases to a minimum of ~50%, ~38% and ~0% for factor Xa, while it reaches ~30%, 

~18% and ~0% for thrombin in the presence of SD, SDS and SDS + AT, respectively. 

Similar results were also achieved with CD and FD oligomers (not shown). This suggests 

that even at high enough concentration of unsulfated and sulfated oligomers 100% 

inhibition of both factor Xa and thrombin was difficult to achieve. In contrast, the 
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inhibition was consistently complete in the presence of antithrombin for all three 

oligomers. Thus, the presence of antithrombin, or indirect pathway, greatly aided inhibition 

of both factor Xa and thrombin. 

 

3.4 DISCUSSION 

The template-driven acceleration in antithrombin inhibition of pro-coagulant proteinases, 

especially thrombin, is extremely attractive because it does not depend on the serpin 

conformational change phenomenon that is so critically dependent on the structure of the 

activator [208]. This led to our studies with the carboxylic acid-based scaffold, PAA, 

which displayed phenomenal acceleration in inhibition, but at physiologically prohibitive 

concentrations [193-194]. To capitalize on this observation, we sought to introduce two 

types of functional groups – hydrophobic (–Ar structure) and hydrogen bonds (–OH) – 

while retaining carboxylic acid (–COOH) groups, so as to enhance the anticoagulant 

activity. 

Macromolecules that satisfy this criteria are difficult to find, except perhaps for 

synthetic lignins, the so-called DHPs [205]. However, natural lignins do not contain 

carboxylic acid moieties. Synthetic lignins containing carboxylic acid groups have been 

obtained, yet molecules longer than trimers have not been synthesized to-date [204]. We 

utilized HRP-catalyzed oxidative coupling conditions, such as high reactant concentrations 

and controlled gradual addition of the oxidant, which reduce chain termination, to obtain 

oligomers with average molecular weight between 800 and 3,500 Da. This corresponds to 
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a size range of tetramers to pentadecamers. This is the first time that higher order 

oligomers of –COOH containing DHPs have been synthesized. 

Detailed characterization of all possible inter-monomeric linkages in these DHPs is 

difficult, yet the ESI-MS spectrum of FD indicates the presence of at least one type of 

linkage, the β-O-4-type (Figure 44, page 168). This is likely to be the major linkage in FD 

with other linkages, such as β-5, β-β and 5-5 also present to some extent. In addition, it is 

likely that not all carboxylic acid groups are retained during oligomerization, as suggested 

by the 13C NMR spectrum (Figure 43, page 167), due to the competing decarboxylation 

reaction. Finally, a number of chiral centers are being generated in oxidative β-5 and β-β 

coupling, which are likely formed without any stereochemical control [209]. Thus, despite 

the apparent simplicity of ESI-MS spectrum (Figure 44, page 168) the composite structure 

of FD, and of CD and SD too, is likely to be complex. This structural complexity is 

expected to be retained in sulfated DHPs. 

The presence of so many structures in a single preparation of DHPs is both a 

blessing and a curse. While heterogeneity and polydispersity imply that reliable, discrete 

structural information on molecules that possess activity is difficult, they also afford an 

essentially high-throughput screening of a large library, which in this case is combinatorial 

because of the nearly random coupling of radicals (Figure 40, page 164). For this work in 

which the objective was on arriving at effective structure(s), rather than coming up with 

detailed structural sequence of a potent molecule, screening such a library was especially 

advantageous. This library represents a group of structures – the ‘lignin carboxylates’ – 

because each molecule herein contains the fundamental lignin structure, an aromatic ring, a 
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three-carbon unit and some –OH groups, with a high probability of possessing carboxylic 

acid groups. 

The anticoagulant properties, assessed under in vitro conditions using PT and 

APTT assays, suggest that all DHPs studied, sulfated and unsulfated, were fairly potent. In 

addition, the potency of these DHPs was dramatically greater than our reference polymer, 

PAA (Table 3, page 159-160), suggesting that our reasoning based on first principles – 

hydrophobicity and anionic character – appears to have succeeded. More importantly, the 

results indicate that unsulfated CD, FD and SD were similar in potency to a LMWH in PT 

assays. This result is striking considering that LMWHs are currently being used in the 

clinic. More experiments are needed to better understand the anticoagulant efficacy of our 

DHPs. 

In contrast to unsulfated DHPs, their sulfated counterparts were nearly 1.4–3.4-fold 

more effective than LMWH in PT assays (Table 3, page 159-160). In APTT assays, the 

unsulfated DHPs were 4.2–6.7-fold weaker than LMWH, while the sulfated DHPs were 

2.2–3.8-fold less effective. Thus, sulfation enhanced the anticoagulation potency of DHPs. 

Overall, both sulfated and unsulfated DHPs are more effective at prolonging the APTT 

than the PT (Figure 45, Table 3, pages 169 and 159-160, respectively). LMWH also 

behaves in a similar fashion. This suggests that DHPs affect the intrinsic pathway of 

coagulation more than the extrinsic pathway, similar to LMWHs. 

Among the six DHPs studied, the anticoagulant potency followed an order CDS > 

FDS > SDS ≅ CD. Although it is difficult to derive precise structural information, it is 

tempting to suggest that the order of potency possibly follows the number of anionic group 
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density in these oligomers. Yet, calculations using the sulfate content (Table 2, page 157-

158) and carbonyl carbon intensities (Figure 43, page 167) reveal that the negative charge 

(–COO- and –OSO3
-) density follows the order CDS = FDS > SDS > CD. Further, although 

the anticoagulant activity of CDS is similar to that of LMWH, its charge density is 

significantly lower [27, 29]. Thus, while the negative groups are important for enhancing 

activity, they are by no means the only determinant of anticoagulant activity. 

With respect to structural diversity of these preparations, SD is the least diverse 

because of the presence of two methoxy groups in the aromatic ring, which reduce the 

formation of 5-5 and β-5 linkages. In contrast, CD with one hydroxyl group, which 

encourages such linkages, is the most diverse [205]. Thus, it is likely that an optimal 

combination of structural diversity and anionic character generates the anticoagulant 

property in these DHPs. 

Mechanistic differences between DHPs and LMWH are revealed in experiments on 

direct and indirect inhibition of thrombin and factor Xa (Figure 46, Table 3, pages 170 and 

159-160, respectively).  All DHPs, sulfated and unsulfated, inhibited the hydrolysis of an 

appropriate chromogenic substrate by both factor Xa and thrombin directly in the absence 

of antithrombin! This is quite an un-expected result considering that PAA does not display 

this behavior. It is likely that the significant hydrophobic character of these DHPs is the 

origin for this direct inhibition effect. 

The IC50 values of these effects were ~4–135-fold below the lowest concentration 

necessary for a 2-fold increase in APTT suggesting that direct inhibition of these 

proteinases is most probably a relevant mechanism of action of these anticoagulants. As 
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observed in clotting time assays, sulfated DHPs were more effective at inhibiting both 

proteinases than unsulfated counterpart by a factor of ~2.6–9.7-fold. Likewise, CD and 

CDS were better anticoagulants than the other two DHPs in these assays and probably for 

the same reasons of structural diversity and charge density. 

Inhibition of thrombin and factor Xa with DHPs in the presence of antithrombin 

exhibited greater complexity. While the IC50 value against thrombin and factor Xa 

improved nearly 2-fold for SDS, it worsened 2–3-fold for CDS and FDS. Indirect inhibition 

of thrombin and factor Xa with these anticoagulants is a complex process because of two 

simultaneous processes – direct and basal inhibition. Thus, indirect inhibition is an additive 

function of the two processes. A pathway that competes with the indirect effect and 

reduces its efficiency is the substrate pathway [187]. This substrate pathway regenerates a 

fully active enzyme from the covalent antithrombin–enzyme complex, thereby raising the 

stoichiometry of inhibition [187]. It is possible that some molecules present in 

heterogeneous CDS and FDS preparations introduce the substrate pathway component, 

thereby decreasing the overall efficacy of inhibition in the presence of antithrombin. 

At a molar level, comparison of the IC50 value in the presence of antithrombin 

(indirect inhibition) suggests that DHPs are 8–20-fold weaker factor Xa inhibitors and 24–

38-fold weaker thrombin inhibitors than LMWH (Table 3, page 159-160). The proportions 

do not change much for direct inhibition of these two enzymes (~5–35-fold against FXa 

and 10–48-fold against thrombin). This observation suggests that although DHPs can 

utilize the antithrombin-dependent (indirect) pathway, the antithrombin-independent 

(direct) pathway is the major contributor to overall proteinase inhibition. 
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With the limited knowledge we have on these novel oligomers at the present time, 

it remains to be determined whether this represents a significant divergence from the effect 

of traditional anticoagulant, LMWH, which is known to predominantly utilize the indirect 

pathway [209].  Recent studies suggest that LMWH may also function through inhibition 

of intrinsic tenase complex, which is independent of antithrombin [210].  Likewise, 

heparin is known to interact with an exosite on factor IXa, which plays an important role in 

antithrombin-independent inhibition of intrinsic tenase [211]. 

Although the heterogeneous and polydisperse nature of these DHP oligomers 

suggest an intrinsic difficulty of deriving useful structural information for rational design 

of advanced molecules, the results present a wealth of opportunities. The molecules present 

in the mixture have a common structure, the ‘lignin carboxylate’. Assuming that a decamer 

is the minimal size necessary for anticoagulant function, a combinatorial virtual library can 

be prepared with the type of monomer, e.g., CA, FA and SA (Figure 40, page 164), and 

inter-monomer linkages, e.g., β-O-4, β-5, β-β and 5-5, as variables. A simple calculation 

shows that 262,144 different decamer structures are possible for each monomer from these 

four inter-monomer linkages. This library size is well within the reach of virtual screening 

techniques. Thus, our current ‘structure(s)’ search is expected to generate some novel first 

generation structures for traditional organic synthesis and biochemical evaluation. 

In conclusion, preliminary results suggests that our chemo-enzymatically prepared 

structurally complex DHPs from 4-hydroxycinnamic acids display interesting 

anticoagulant activities with the potency of CDS resembling LMW heparin in vitro plasma 

clotting time assays. In addition, the anticoagulant function appears to originate from both 
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antithrombin-dependent and –independent mechanisms with the indirect pathway 

appearing to be the major contributor. This dual inhibition property of our DHP oligomers 

is the first example in inhibitors of coagulation. Yet, detailed mechanistic studies are 

necessary to better understand the mode of action of these novel oligomers. These 

molecules are structurally unlike the highly sulfated polysaccharide scaffold of heparins 

and are readily obtained in few steps. This work puts forward novel, non-heparin 

structure(s), which may be exploited for the design of potent, dual action inhibitors of 

coagulation through combinatorial virtual screening on a library of DHP oligomers. 

 

3.5 EXPERIMENTAL 

3.5.1 Proteins and Chemicals 

Horseradish peroxidase (HRP) with activity of 250-330 units/mg was from Sigma (St. 

Louis, MO). Human antithrombin (AT) was from Molecular Innovations (Southfield, MI) 

and proteinases, factor Xa and thrombin, were from Haematologic Technologies (Essex 

Junction, VT). Stock solutions of proteins were prepared in 20 mM sodium phosphate 

buffer, pH 7.4, containing 100 mM NaCl (AT and thrombin) or 5 mM MES buffer, pH 6.0 

(factor Xa). Chromogenic substrates Spectrozyme TH and Spectrozyme FXa were from 

American Diagnostica (Greenwich, CT). Citrated human plasma for coagulation time 

assays was purchased from Valley Biomedical (Winchester, VA). Thromboplastin and 

ellagic acid were obtained from Fisher Diagnostics (Middletown, VA). LMWH (MW = 

5,060 Da), 30% hydrogen peroxide, sinapic acid (SA), ferulic acid (FA) and caffeic acid 

(CA) were from Sigma (St. Louis, MO). PAA2280 was from American Polymer Standards 
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(Mentor, OH), while (+)-CS (Fig. 2) was prepared as described earlier [190-192].  All 

other chemicals were analytical reagent grade from either Aldrich Chemicals (Milwaukee, 

WI) or Fisher (Pittsburgh, PA) and used without further purification. 

 

3.5.2 Oxidative Coupling and Sulfation of 4-Hydroxycinnamic Acid Derivatives 

The dehydrogenation polymers (DHP) were prepared by the slow addition of a 

phenylpropenoid precursor and H2O2 to a solution of horseradish peroxidase (HRP) [195]. 

Briefly, 4-hydroxycinnamic acid precursor (25 mM) in 10 mM sodium phosphate buffer, 

pH 8.0, (200 mL) and H2O2 (75 mM) in the same buffer (100 mL) were simultaneously 

added drop-wise over a 5 h period to a stirring solution of HRP (10 mg) in the sodium 

phosphate buffer (50 mL) at room temperature in dark. Three additional aliquots H2O2 (75 

mM) were added over the next 72 h while monitoring the polymerization using analytical 

size-exclusion chromatography (SEC). At the end of nearly 80 hours, the solution was 

freeze-dried, the solid re-dissolved in deionized water, and the solution filtered repeatedly 

through a molecular membrane (Amicon YM5K) to remove salts and low molecular 

weight material. The final solution was washed with ether and lyophilized to give a dark 

brown powder, the sodium salt of the DHP. The synthetic DHPs were sulfated with 

triethylamine-sulfur trioxide complex [192].  Briefly, the lyophilized DHP sample (500 

mg) was dissolved in dry DMF (50 mL) containing triethylamine – sulfur trioxide complex 

(1 g) and stirred for 24 h at 60°C. After the removal of most of the DMF in vacuo, the 

remaining product was taken up in 30% aqueous sodium acetate, the sodium salt 
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precipitated using ~10 volume of cold ethanol. The precipitated product was further 

purified with dialysis using Amicon 10K cutoff dialysis membrane. 

 

3.5.3 Characterization of DHPs 

Elemental analysis of DHP samples was obtained from Atlantic Microlabs (Norcross, GA). 

Infrared spectra were recorded on a Thermo Nicolet Avatar 360 FT-IR spectrophotometer 

(Somerset, NJ) with DHP samples in KBr pellets. The molecular weights of acetylated 

DHPs were determined using a Phenogel 500Å non-aqueous size-exclusion column (300 × 

7.8 mm, Phenomenex, Torrance, CA). Acetylation of DHPs was performed using a 

standard Ac2O-pyridine (1:1) mixture for 24 h at room temperature. Acetylated DHPs were 

eluted with THF at 0.75 mL/min and detected at 280 nm. Polystyrene samples (450–7,600 

Da) from American Polymer Standards, Mentor, OH were used as standards. Number 

average molecular weights (MN) and weight average molecular weights (MW) were 

calculated by dividing the base of each peak into 10 equal intervals. The peak heights at 

each of these points were determined using CLASS VP (Shimadzu) software and the 

molecular weights at these points obtained from a standard curve. The MN and MW values 

were then calculated using standard equations. For 1H and 13C NMR spectroscopy, 5–20% 

(w/v) solutions of dry DHPs in DMSO-d6 were prepared. The spectra were recorded on a 

Gemini 300 spectrometer (Varian, Palo Alto, CA) at 298 K (1H) or 323 K (13C). 

Quantitative analysis of 13C signal intensities was performed using inverse gated 

decoupling sequence with a 10 s relaxation delay and an acquisition time of 1.7 s. Nearly 

25,000 to 40,000 scans were acquired for signal integration. Mass spectrometry was 
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performed on sulfated and unsulfated DHP samples using a Micromass ZMD4000 single 

quadrupole mass spectrometer with ESI ionization probe operating in negative ion mode 

(Waters Corp., Milford, MA). The samples, dissolved in acetonitrile containing formic 

acid (5% v/v), were infused at 10 µL/min and optimized MS ionization conditions were 

employed. The source block temperature and the probe temperature were held at 100 and 

120 OC, respectively. Corona and cone voltages of 2.69 kV and 161 V were selected 

following optimization. The desolvation nitrogen flow was 500 L/hour. Mass spectra were 

acquired in the mass range from 110 to 1000 daltons at 400 amu/sec. 

 

3.5.4 Prothrombin Time and Activated Partial Thromboplastin Time 

Clotting time was determined in a standard 1-stage recalcification assay with a BBL 

Fibrosystem fibrometer (Becton-Dickinson, Sparles, MD). For PT assays, thromboplastin 

was reconstituted according to manufacturer’s directions and warmed to 37°C. A 10 µL 

sample of the DHP, to give the desired concentration, was brought up to 100 µL with 

citrated human plasma, incubated for 30 s at 37 OC following by addition of 200 µL pre-

warmed thromboplastin. Clotting time in the absence of an anticoagulant was determined 

using 10 µL deionized water. For APTT assay, 10 µL DHP sample was mixed with 90 µL 

citrated human plasma and 100 µL of pre-warmed APTT reagent (0.2% ellagic acid). After 

incubation for 220 s, clotting was initiated by adding 100 µL of 25 mM CaCl2 (37 OC) and 

time to clot noted. Each clotting assay was performed in duplicate or triplicate. The data 
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were fit to a quadratic function, which was used to determine the concentration of DHP (or 

the reference molecules) necessary to double the clotting time, 2×APTT or 2×PT. 

 

3.5.5 Proteinase Inhibition 

Both direct and indirect inhibition of thrombin and factor Xa by sulfated and unsulfated 

DHPs was determined through a chromogenic substrate hydrolysis assay. A 10 µL sample 

of DHP at concentrations ranging from 0.035 to 10,000 µg/mL was diluted with 885 µL of 

20 mM Tris-HCl buffer, pH 7.4, containing 100 mM NaCl, 2.5 mM CaCl2 and 0.1 % 

PEG8000 at room temperature in polyethylene glycol-coated polystyrene cuvettes, 

followed by addition of 5 µL of proteinase solution to give 4 nM thrombin or factor Xa. 

After 10 min of incubation at room temperature, 100 µL of 1 mM chromogenic substrate 

was added (Spectrozyme FXa for factor Xa and Spectrozyme TH for thrombin) and the 

residual proteinase activity was determined from the initial rate of increase in absorbance 

at 405 nm. Relative residual proteinase activity at each concentration was calculated using 

the proteinase activity measured under otherwise identical conditions, except for the 

absence of DHP. Indirect inhibition of thrombin and factor Xa using antithrombin-sulfated 

DHP complex was performed in the presence of 100 nM and 200 nM antithrombin for 

inhibition, respectively, in an otherwise identical manner. The sigmoidal dose-dependence 

of residual proteinase activity was fitted with a logistic function of the form f(x) = YO + 

(1⎯YO)/(1+([DHP]O/IC50)HS), where YO is the lower threshold level of the inhibitory 

activity and HS is the Hill-slope. 
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Table 2. Average molecular weight, elemental composition and sulfate density of 
DHPs from cinnamic acid derivatives. 

 
 
a Average molecular weight was obtained through non-aqueous SEC on the acetylated 

derivatives, CDAC, FDAC, and SDAC, using polystyrene as standards. The error in 

determination of these numbers is less than 10% (see Methods). b Peak-average molecular 

weight.  c Number-average molecular weight.  d Weight-average molecular weight. e Size of 

an average oligomer.  f Analysis was performed on unsulfated or sulfated DHPs, and not on 

acetylated DHPs. g Average number of sulfates per monomeric unit was calculated from 

elemental sulfur composition and the size of an average unsulfated oligomer. h numbers in 

brackets shows the predicted composition of a homogeneous β-O-4-linked decamer of 

appropriate DHP. i not determined. 
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Table 3. Anticoagulation effect of DHPs from 4-hydroxycinnamic acids.
 
 
a PT and APTT values were deduced in vitro human plasma experiments where the clot 

initiator is either thromboplastin or ellagic acid, respectively. Experiments were performed 

in duplicate or triplicate (see Methods). Errors represent ± 1 S. E. b IC50 values were 

determined through direct inhibition of thrombin or factor Xa using a chromogenic 

substrate hydrolysis assay (see Methods). c S.E. ±1 d Not determined. e No inhibition was 

observed in buffer containing Ca2+ at concentrations lower than 4560 µg/mL. f Experiment 

performed only once. 
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Figure Legends 

Figure 40.  Chemo-enzymatic synthesis of 4-hydroxycinnamic acid-based 

dehydropolymers (DHPs), CD, FD and SD.  Horseradish peroxidase (HRP)-catalyzed 

oxidative coupling of caffeic acid (CA), ferulic acid (FA) or sinapic acid (SA), in the 

presence of H2O2 generates oligomers of size 4–15 units, which are sulfated with Et3N:SO3 

complex to give sulfated DHPs. Phenolic oxidation can generate four types of radical 

intermediates, of which typically intermediates I1 and I2 couple with starting material to 

give oligomers with different types of inter-monomeric linkages. The most common 

linkages formed include β-O-4 and β-5. Other less common linkages include β-β, 5-5 and 

5-O-4, for which oligomerization tends to arrest chain growth [205].  The length of the 

chain greatly depends on the conditions of oligomerization. 

 

Figure 41.  Structures of reference compounds, low molecular weight heparin (LMWH), 

polyacrylic acid (PAA), and (+)-catechin sulfate ((+)-CS). The average molecular weights 

(MW) for polymers LMWH and PAA are as specified, whereas (+)-CS has a molecular 

weight of 814 Da. LMWH is a heterogeneous mixture of oligosaccharide chains, in which 

the uronic acid can be iduronic or glucuronic acid, while the glucosamine can be N-

sulfated or N-acetylated (R = –SO3
- or –COCH3). The 2-, 3-, and 6-positions of saccharide 

residues can be either sulfated or unsulfated (X, Y and Z = –H or –SO3
-). 
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Figure 42.  Non-aqueous size exclusion chromatography of acetylated DHPs. Analytical 

SEC was performed with ~100-150 µg of CDAC (       ), FDAC  (       ) and SDAC  (       ) 

oligomers using dry THF as the mobile phase at 0.75 mL/min. Each chromatogram is 

scaled to the highest peak intensity (set to 100%). The time of monomer elution is 

indicated. 

 

Figure 43. Quantitative 13C NMR spectra of DHPs, SD (A), FD (B) and CD (C) in 

DMSO-d6 obtained using inverse gated decoupling pulse sequence. Four regions are 

apparent, the carboxylic acid region between 160–170 ppm, the aromatic and vinylic peaks 

between 100–160 ppm, the α and β-carbons of alkoxy groups between 70–100 ppm, and 

the methoxy groups at 56 ppm. Solvent signal is observed at ~40 ppm. Note the variation 

in intensity of carboxylic acid carbon at ~165 ppm and the significant difference in signal 

composition between the three oligomers. D) shows the fingerprint region in the IR 

spectrum of FD (light line) and FDS (dark line) in KBr pellets. Sulfate stretches in FDS are 

observed at 1080 and 1110 cm-1.  
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Figure 44. ESI-MS of FD oligomer through direct infusion of the oligomer (A) and 

mass analysis of peaks p1 through p6 using β-O-4 inter-monomeric linkages (B). Peaks 

merge into the background above 700 amu. A majority of the significant peaks, especially 

in the higher mass range, can be explained on the basis of a mono-charged molecular ion, 

which has lost 1 through 3 CO2 units. 

 

Figure 45. Prolongation of clotting time as a function of SD (closed circles) and 

SDS concentrations (open circles) in either prothrombin time assay (A) or the 

activated partial thromboplastin time assay (B). The solid lines are trend lines, and not 

exponential fits. Error bars in the range of symbol size have been omitted. In both assay, 

sulfation of DHP enhanced the anticoagulant activity of oligomer. See experimental 

section for details. 

 

Figure 46. Inhibition of the blood coagulation proteases factor Xa (A) and 

thrombin (B) by dehydrogenation polymers from sinapic acid: SD (●), SDS (■) and 

SDS in the presence of antithrombin (▼). The inhibition of thrombin and factor Xa by 

sulfated and unsulfated DHPs was determined through a chromogenic substrate hydrolysis 

assay. Compared to its unsulfated counterpart, the sulfated DHP was found to be better in 

inhibiting the procoagulant proteinases. See text for details. 
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Figure 40 
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Figure 41 
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Figure 42 
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Figure 43 
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Figure 44 
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Figure 45 

0 100 200 300

PT
   

   
  (

s)

10

20

30

40
A

[DHP]O       (µg/mL)
0 10 20 30

A
PT

T  
   

   
 (s

)

30

40

50

60

70

80

90 B

 
 
 
 

  



www.manaraa.com

170 

 
Figure 46 
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Chapter 4: Characterization of the Anticoagulation Profile of Novel, 
Synthetic, Sulfated Dehydropolymers of 4-Hydroxycinnamic Acids in 

Plasma and Blood 
 

4.1 Abstract 
Background- Recently, we designed sulfated dehydropolymers (DHPs) of 4-

hydroxycinnamic acids that displayed interesting anticoagulant properties [212]. Sulfated 

DHPs are structurally completely different from all the current clinically used 

anticoagulants and represent a new class of coagulation inhibitors. Objective- To elucidate 

the anticoagulant potential of sulfated DHPs in plasma and blood. Methods- Clotting time 

assays, thrombin generation assay, thromboelastography and haemostasis analysis system 

were used to evaluate the anticoagulant potential. Results- Sulfated DHPs prolong 

prothrombin and activated partial thromboplastin times at concentrations comparable to the 

clinically used low molecular weight heparin, enoxaparin. Studies in human plasma and 

whole blood show that sulfated DHPs possess an anticoagulation profile similar to 

enoxaparin, the clinically used LMWH, except for the concentration range at which they 

are effective. Thrombogenesis studies in plasma indicate that sulfated DHPs are less potent 

than enoxaparin by a factor of 7–16-fold, while whole blood studies using 

thromboelastography and Hemostasis Analysis System indicate that they are 17–140-fold 

less potent. Conclusion- In combination, the results demonstrate that the first generation 
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sulfated DHPs compare well with enoxaparin and represent potent novel molecules for 

further rational modifications. 

 

4.2 Introduction 

Thrombin and factor Xa (FXa), two key serine proteases of the coagulation 

cascade, have been the target of rational design of coagulation inhibitors [21]. Both 

proteases can be targeted through either direct or indirect inhibition pathway. Direct 

inhibitors include hirudin, argatroban ximelagatran and others, while heparin and its 

derivatives utilize the indirect pathway. 

The commonly used anticoagulant heparin works through antithrombin, a plasma 

serine proteinase inhibitor (serpin) and a major regulator of clotting. Heparin greatly 

enhances the rate of antithrombin inhibition of thrombin, FXa and factor IXa (FIXa) under 

physiological conditions, which forms the basis for its clinical use for the past eight 

decades [213]. Yet, heparin suffers from several limitations including enhanced risk for 

bleeding, variable patient response, heparin-induced thrombocytopenia and the inability to 

inhibit clot-bound thrombin [214]. Low molecular weight heparins (LMWHs), derivatives 

of heparin with reduced polymeric length, and fondaparinux, a specific sequence of five 

saccharide residues (Figure. 47A, page 192), have been introduced in the past two decades 

as better mimics of heparin. Yet, these newer anticoagulants still possess enhanced 

bleeding risk and are unable to inhibit clot-bound thrombin [215, 216]. 
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Arguable, the problems of heparin therapy arguably arise from the structure of 

heparin. Heparin is a linear, co-polymer of glucosamine and uronic acid residues that are 

decorated with a large number of sulfate groups generating a highly anionic polymer. The 

average molecular weight of full-length heparin is ~15,000 Da implying the presence of 

~65–85 negative charges on average on a single chain [187].  In addition to this 

polyanionic character, heparin biosynthesis results in millions of sequences that differ from 

each other in the placement of sulfate groups, thereby generating considerable 

heterogeneity in each preparation of the anticoagulant. Both these structural features 

introduce a large number of interactions with plasma proteins and cells [29], which likely 

induce many of heparin’s adverse effects. 

Apart from the indirectly acting anticoagulants, several direct inhibitors have been 

put forward such as argatroban, ximelagatran and dabigatran for thrombin and, DX9065a 

and razaxaban for factor Xa. Structurally, most direct inhibitors of thrombin (DTIs) and 

factor Xa contain a guanidine or an amidine group that mimic the critical arginine residue 

at the P-1 site of the proteinase recognition sequence [13]. DTIs and factor Xa inhibitors 

form a major class of clotting regulators that are considered to be superior to heparins 

primarily because of the expectation that they can inhibit both circulating and clot-bound 

enzymes. Yet, challenges exist in the development of these inhibitors including 

establishing enzyme-binding affinity that is not associated with excessive bleeding and 

avoiding liver toxicity [37]. 

Mechanistically, the direct and indirect inhibitors utilize different pathways of 

inhibition. While heparins require antithrombin to mediate their effect, the direct inhibitors 
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of thrombin and FXa either bind the active site or an exosite on the enzyme to reduce its 

proteolytic activity [13]. In principle, these pathways are complementary and, although no 

molecule can simultaneously utilize both the direct and indirect pathways, the design of 

such dual inhibitors is expected to greatly advance current anticoagulant therapy. 

We reasoned that reducing heparin’s high negative charge density would reduce its 

adverse effects. At the same time, enhancing heparin’s hydrophobic character would 

introduce greater specificity of action. Thus we designed sulfated dehydropolymers 

(DHPs) of 4-hydroxycinammic acids (Figure 47B, page 192). These designed molecules 

were prepared in a simple, two-step chemo-enzymatic process involving enzymatic 

coupling of 4-hydroxycinnamic acids followed by the chemical sulfation of the resulting 

DHPs [212]. Preliminary studies with the sulfated DHPs suggested the presence of potent 

anticoagulant activity arising from a possible dual mechanism of factor Xa and thrombin 

inhibition. Such dual mechanism of inhibition (indirect and direct) has not been observed 

earlier for any anticoagulant. In addition to this unique mechanistic feature, sulfated DHPs 

are also structurally unique. DHPs possess a scaffold unlike any other class of 

anticoagulants investigated to-date, including the heparins, the coumarins, the hirudins and 

the peptidomimetics. 

Although much work remains to be performed regarding the detailed mechanism of 

action of these sulfated DHPs, establishing the viability of these molecules as 

anticoagulants of interest is important. In this paper, we report on the performance of our 

sulfated DHPs in several in vitro and ex vivo systems including activated partial 

thromboplastin time (APTT), prothrombin time (PT), thromboelastography (TEG®) and 
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Hemostasis Analysis System (HAS™). Our studies in human plasma and citrated whole 

blood show that the sulfated DHPs, which represent only the first generation design in the 

category of non-polysaccharide heparin mimics, compare favorably with the clinically 

used anticoagulant, enoxaparin. 

 

4.3 Materials and Methods 

4.3.1 Proteins, Chemicals and Coagulation Assay Conditions   

Sulfated DHPs, CDSO3, FDSO3 and SDSO3 (Fig. 47B, page 192) were prepared in two 

steps from 4-hydroxycinnamic acid monomers, caffeic acid, ferulic acid and sinapic acid, 

as described previously [212]. Stock solutions of sulfated DHPs were prepared in 

deionized water and stored at –80OC. Chromogenic substrate Spectrozyme TH was 

purchased from American Diagnostica (Greenwich, CT). Citrated human plasma for 

coagulation time assays was purchased from Valley Biomedical (Winchester, VA). 

Activated partial thromboplastin time reagent containing ellagic acid (APTT-LS), 

thromboplastin-D and 25 mM CaCl2 for plasma assays were obtained from Fisher 

Diagnostics (Middletown, VA). Thromboelastograph® Coagulation Analyzer 5000 

(TEG®), disposable cups and pins, and 200 mM stock CaCl2 for blood assays were 

obtained from Haemoscope Corporation (Niles, IL). LMWH (MW 5,060 Da) was 

purchased from Sigma (St. Louis, MO), while enoxaparin (MW 4,500 Da) was from 

Aventis Pharmaceuticals. All other chemicals were analytical reagent grade from either 

Sigma Chemicals (St. Louis, MO) or Fisher (Pittsburgh, PA) and used as obtained. 
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4.3.2 Prothrombin Time and Activated Partial Thromboplastin Time 

Clotting time was determined in a standard 1-stage recalcification assay with a BBL 

Fibrosystem fibrometer (Becton-Dickinson, Sparles, MD). For PT and APTT assays, the 

reagents were pre-warmed to 37°C. For PT assays, 10 µL sulfated DHP (or the reference 

molecule) was mixed with 90 µL of citrated human plasma, incubated for 30 s at 37 OC 

followed by addition of 200 µL pre-warmed thromboplastin. For APTT assays, 10 µL 

DHP was mixed with 90 µL citrated human plasma and 100 µL 0.2% ellagic acid. After 

incubation for 220 s, clotting was initiated by adding 100 µL of 25 mM CaCl2. Each 

experiment was performed at least twice. The averaged data was fitted by a quadratic 

equation to calculate the concentration of the anticoagulant necessary to double the clotting 

time (2×APTT or 2×PT). 

 

4.3.3 Inhibition of Thrombin Generation in Plasma by Sulfated DHPs  

A 650 µL aliquot of freshly thawed human plasma was co-incubated with 10 µL sulfated 

DHP (or the reference molecule) and 200 µL APTT-LS reagent at 37°C for 5 minutes. 

Following incubation, 850 µL of this sample was transferred to a PEG 20000-coated 

polystyrene cuvette. Clotting was quickly initiated by adding 50 µL of 2 mM Spectrozyme 

TH and 200 µl 25 mM CaCl2 [217]. Plasma thrombin activity was continuously monitored 

from the sigmoidal increase in absorbance at 405 nm, which was followed until a plateau 

was reached to measure the lag time and the slope of the thrombin ‘explosion’ phase. 
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4.3.4 Thromboelastograph (TEG®) Analysis of Clot Formation in the Presence of 

DHPs  

The TEG® assays were performed essentially as reported earlier [218]. Briefly, the assays 

were initiated by transferring 20 µL of 200 mM CaCl2 into the HaemoscopeTM disposable 

cup, oscillating through 40 45’ angle at 0.1 Hz, followed by the addition of a mixture of 

340 µL of sodium citrated whole blood containing 10 µL sulfated DHP or dH2O (control) 

at 37 OC. This recalcification initiates clot formation in the TEG® coagulation analyzer, 

which operates until all necessary data collection (R, K, α and MA) is completed in an 

automated manner. 

 

4.3.5 Hemostasis Analysis System (HASTM) Analysis of Clot Formation in the 

Presence of Sulfated DHPs.  

Analysis of platelet function and clot structure was performed using the HASTM 

(Hemodyne, Inc., Richmond, VA). A mixture of 700 µl of citrated whole blood and 10 µl 

sulfated DHP or dH2O (control) was co-incubated at room temperature for 5 minutes and 

then 700 µl was placed in a disposable cup. To initiate clotting, 50 µl of 150 mM CaCl2 

was added to 700 µl of the blood – DHP mixture to give a final CaCl2 concentration of 10 

mM, while the cone was simultaneously lowered into the recalcified blood sample. As the 

clotting proceeds, platelets attach to both surfaces generating tension within the fibrin 

meshwork. This tension is measured with a displacement transducer in terms of platelet 

contractile force (PCF). The onset of PCF is a measure of thrombin generation time (TGT), 
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while clot elastic modulus (CEM) is the ratio of the applied force (stress) by the transducer 

to the measured displacement (strain). The HASTM system operates in an automated 

manner until all data is collected. 

 

4.4 RESULTS 

4.4.1 Effect of Sulfated DHPs on Clotting Times 

PT and APTT are commonly used to assess the coagulation status of human plasma [131]. 

Whereas PT is an indicator of the extrinsic pathway, APTT indicates the status of the 

intrinsic pathway, although some overlap cannot be avoided due to the interconnectivity of 

the pathways. Previously we have reported our preliminary results on the effect of the 

sulfated DHPs in these assays [212]. We have now extended these results and added the 

clinically used LMWH, enoxaparin, as a reference. Briefly, all three sulfated DHPs 

exhibited a significant concentration-dependent prolongation of clotting time in both the 

assays (not shown). A typical parameter for describing anticoagulant activity in these 

assays is the concentration of the anticoagulant needed for doubling the normal plasma 

clotting time (2×PT or 2×APTT). The 2×PT value for sulfated DHPs ranged from 13.1–

33.3 µM, while that for enoxaparin was 75.3 µM suggesting 2.3–5.7-fold better PT activity 

for the DHPs (Table 4, page 187). The doubling of APTT required 2.9–6.4 µM 

concentration of the three sulfated DHPs, while enoxaparin required 1.2 µM. This indicates 

that the sulfated DHPs are ~2.4–5.3-fold weaker anticoagulants in the APTT assay as 

compared to enoxaparin and the order of activity is CDSO3 > FDSO3 > SDSO3 (Table 4, 

page 187). 

  



www.manaraa.com

179 

 

4.4.2 Effect of Sulfated DHPs on Thrombogenesis in Normal Human Plasma 

Thrombin amplifies its own production. An effective anticoagulant is expected to decrease 

thrombogenesis by delaying this amplification [217, 218]. To characterize the ability of 

sulfated DHPs to inhibit thrombogenesis in human plasma, we utilized an in vitro 

absorbance assay based on the thrombin-specific chromogenic substrate, Spectrozyme TH. 

The thrombin generation profile was sigmoidal as expected (Figure 48, page 193) [217]. 

The lag phase of the profile, during which thrombin levels increase in a slow, linear 

fashion, corresponds to the accumulation of the upstream coagulation factors that are 

required for amplification of the dormant thrombin response (see Inset to Figure 48, page 

193). The next phase involves a rapid growth in thrombin activity, called ‘explosion’, 

which is quantified by the slope of the vertical segment of the sigmoidal profile. In the 

final phase, a clot forms as thrombin levels reach a maximum. 

Inhibitors of thrombin are expected to increase the lag time and decrease the 

thrombin ‘explosion’ slope [218-220]. All three DHPs prolonged the lag time as well as 

reduced the slope corresponding to thrombin ‘explosion’ in a dose-dependent manner 

(Figure 48, page 193). These profiles were similar to enoxaparin, although the effective 

concentration ranges were different. Thus, sulfated DHPs rapidly inhibit basal activation of 

pro-thrombin as well as significantly reduce the positive feedback effects of thrombin. 

To compare the efficacies, the dependence of lag time (Figure 48B, page 193) and 

thrombin ‘explosion’ slope (Fig. 48C, page 193) on the concentration of the anticoagulants 

was plotted. A rapid increase in lag time and decrease in ‘explosion’ slope with the 
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increase in the concentration of sulfated DHPs was evident. These profiles were also 

similar to those obtained for enoxaparin. As a comparative measure, the concentration of 

the anticoagulant required to extend the lag time to twice the normal, uninhibited value (70 

sec) was calculated. This concentration was found to be 5.0, 10.2 and 11.6 µM for CDSO3, 

FDSO3, and SDSO3, while for enoxaparin it was 0.7 µM (Figure 49B, page 194). Thus, 

with respect to the inhibition of initial thrombin synthesis in human plasma, DHPs are less 

potent than enoxaparin by a factor of 7.1–16.6-fold. For comparing the potency in reducing 

thrombin amplification, the concentration of the three sulfated DHPs that results in a 50% 

decrease in the ‘explosion’ slope was calculated. This concentration was found to be 5.9, 

10.1, and 14.5 µM for CDSO3, FDSO3 and SDSO3, respectively, while it was 0.8 µM for 

enoxaparin. These results parallel the lag time results and show that sulfated DHPs are 

only 7.3–18.1-fold weaker than enoxaparin in inhibiting the strong positive feedback 

process of thrombin. 

 

4.4.3 Effect of Sulfated DHPs on Whole Blood Clotting as Evaluated by 

Thromboelastography 

The study on thrombin generation in plasma primarily describes the inhibition 

phenomenon prior to clot formation. However, clot is a dynamic system that matures and 

evolves as clotting proceeds. More specifically, it is a complex process of thrombin-

mediated fibrin formation that involves many other components, e.g., platelets. To 

determine whether sulfated DHPs differ from enoxaparin in whole blood, we employed 
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thromboelastography (TEG®), a technique used routinely in clinical settings as well as for 

following anticoagulation with LMWHs [221-223]. 

TEG® measures various responses of a formed clot to shearing force. In this 

technique, a pin is inserted into an oscillating cup containing whole blood. As fibrin 

polymerizes, the pin starts to move with the oscillating cup and the movement of the pin is 

recorded as amplitude, which in time reaches maximum amplitude (MA) (Figure 49A, 

page 194). The stronger the clot, the more the pin moves with the cup and the higher the 

MA. Shear elastic modulus strength (G), a measure of clot stiffness, is calculated from 

MA. Additionally reaction time R and angle α (Figure 49A, page 194) are also obtained in 

a TEG® experiment. R is the time required for the appearance of the first detectable signal 

of 2mm in amplitude and is interpreted as the time required for the initial fibrin formation. 

Angle α is the acute angle in degrees between an extension of the R tracing and the tangent 

of the maximum slope produced by the TEG® tracing during clot stiffening. Angle α is a 

measure of the rate of formation of three-dimensional fibrin network. Parameters that 

affect MA include fibrin concentration and structure, concentration and functional state of 

platelets, deficiency of coagulation factors and presence of clotting inhibitors [224]. 

All three sulfated DHPs affect R, α, MA and G parameters in a dose-dependent 

manner (Table 5, page 188). For example, as the concentration of CDSO3 increases from 0 

µM to 24.3 µM, R increases from 7.0 to 21.5 min. This effect parallels the time to clot 

results obtained in the plasma assay. Likewise, sulfated DHPs lower the value of angle α 

from 59° for normal blood to 13.5–17° at the highest concentrations studied. This indicates 
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that the kinetics of fibrin polymerization and networking is significantly retarded by the 

presence of sulfated DHPs. Enoxaparin exhibits similar characteristics, except that it is 23–

51-fold more potent than sulfated DHPs when comparisons are made at doubling the R 

value from its value in the absence of any anticoagulants (not shown). Likewise, 

enoxaparin is 17–32-fold and 18–37-fold more potent when comparisons are made for a 

50% reduction in the angle α and shear elastic modulus G, respectively (Figure 49B, page 

194). 

 

4.4.4 Effect of Sulfated DHPs on Whole Blood Coagulation as Evaluated by 

Hemostasis Analysis System.  

To further compare the whole blood anticoagulant potential of the sulfated DHPs with 

enoxaparin, we performed an ex-vivo study using HAS™, which measures the forces 

generated by platelets within a clot [225]. In this technique, the clot is allowed to form 

between a temperature-controlled lower surface (cup) and a parallel upper surface (cone). 

As the clot grows, it attaches to both the surfaces pulling the fibrin strands inward. This 

pull is measured by a displacement transducer, which produces an electrical signal on the 

cone proportional to the amount of force generated by the platelets. HASTM also provides 

detailed information on clot structure through the measurement of clot elastic modulus 

(CEM), which is the ratio of stress induced by platelets to strain arising from the change in 

clot thickness [226]. PCF is observed to increase as soon as thrombin is formed suggesting 

that appearance of PCF can be used as surrogate marker for TGT (described above), the 

time required for production of thrombin following initiation of clotting [225]. 
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In addition to its dependence on thrombin, PCF is sensitive to platelet number, 

platelet metabolic status, presence of thrombin inhibitors and degree of GPIIb/IIIa 

exposure [222, 227-229]. Likewise, CEM is a complex parameter that is sensitive to 

changes in clot structure, fibrinogen concentration, the rate of thrombin generation and red 

blood cell flexibility, while TGT is sensitive to clotting factor deficiencies, antithrombin 

concentration and presence of anticoagulants. Low PCF and low CEM coupled with a 

prolonged TGT are associated with increased bleeding risk, while elevated PCF and CEM 

paired with a decreased TGT are associated with thrombotic disease states. 

All three DHPs affect TGT, PCF and CEM parameters in a dose-dependent manner 

(Table 6, page 189). For example, as the concentration of FDSO3 increases from 0 to 23.8 

µM, the TGT value increases from 235 seconds to 465 seconds (Figure 50A, page 195). 

This effect parallels the results obtained in the plasma thrombogenesis assay and TEG®. 

More importantly, the presence of sulfated DHPs in blood decreases PCF from 7.6 Kdynes 

to 2.4–1.2 Kdynes at 14–37 µM (Figure 50B, page 195), while enoxaparin induces a PCF 

of 0.9 Kdynes at 0.44 µM. When comparisons are made for a 50% reduction in PCF, 

enoxaparin is 63–140-fold more potent. Likewise, sulfated DHPs decrease CEM from 21.6 

Kdynes/cm2 for normal blood to 4.5–1.3 Kdynes/cm2 at the highest concentrations studied. 

Comparison of CEM values indicates that enoxaparin is 43–90-fold more potent than 

sulfated DHPs (Figure 50C, page 195). These results confirm that sulfated DHPs behave in 

a manner similar to enoxaparin, except for the concentration at which these are effective. 
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4.5 DISCUSSION 
Sulfated DHPs studied here are structurally unlike heparin and its derivatives including 

LMWHs, fondaparinux and idraparinux. Whereas heparin possesses a polysaccharide 

scaffold, DHPs are based on a 4-hydroxycinnamic acid scaffold. Earlier work suggests that 

sulfated DHPs contain an average of 0.8–0.9 anionic (sulfate and carboxylate) groups per 

repeating unit [212], while for heparins this number is ~2.6 [230]. Additionally, sulfated 

DHPs contain multiple aromatic rings, which are completely absent in heparin. These 

structural features introduce considerable hydrophobicity in sulfated DHPs in comparison 

to heparin.  

Sulfated DHPs are also completely different from any of the clinically used 

anticoagulants including hirudin, bivalirudin, argatroban, dabigatran and ximelagatran. 

Whereas the peptides or peptidomimetics utilize positively charged groups, e.g. arginine or 

an arginine-mimic, to target the active site of pro-coagulant proteinases, sulfated DHPs are 

devoid of any positively charged group. Thus, sulfated DHPs represent a structurally 

distinct class of molecules. 

On a mechanistic front, sulfated DHPs appeared to display a novel mechanism of 

anticoagulation. Preliminary investigations suggested that sulfated DHPs preferred to 

inhibit thrombin and factor Xa directly, although indirect mechanism through antithrombin 

could not be ruled out completely [212]. This was striking considering that sulfated DHPs 

were originally designed to mimic the function of heparin. Considering that these novel 

anticoagulants are negatively charged molecules, it can be inferred that direct inhibition of 

  



www.manaraa.com

185 

thrombin and factor Xa does not arise from an active site competition, but possibly from an 

allosteric inhibition mechanism. 

Given the unique structural and mechanistic features of sulfated DHPs, we sought 

to investigate the comparative anticoagulant potency of these molecules. The work 

presented here shows that in the PT assay, the three sulfated DHPs are effective at 

concentrations in the range of enoxaparin, while in the APTT assay they are only 2–6-fold 

weaker. Interestingly, despite major structural differences, both sulfated DHPs and 

enoxaparin prolong APTT better than PT. This suggests that the DHPs affect the intrinsic 

pathway of coagulation more than the extrinsic pathway. Finally, the anticoagulant potency 

among the sulfated DHPs followed the order of CDSO3 > FDSO3 > SDSO3 indicating a 

significant dependence of activity on structure. 

All three sulfated DHPs inhibit the initial activation of prothrombin to thrombin in 

human plasma and also slow down the process of thrombin ‘explosion’ suggesting that the 

new molecules possess properties characteristic of an anticoagulant. Initial thrombin 

formation is slowed because the sulfated DHPs are inhibiting upstream enzymes, 

especially factor Xa, while the rate of thrombin ‘explosion’ is significantly reduced due to 

direct thrombin inhibition. Likewise, in whole blood all three sulfated DHPs increased the 

R time, while decreasing α, MA and G in the TEG® study. The three sulfated DHPs are 

also able to decrease CEM and PCF, and increase TGT in HAS™ experiments. Overall, in 

both human plasma and whole blood, CDSO3 displays the best anticoagulant profile 

followed by FDSO3 and SDSO3, a trend noted consistently in current studies. 
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Comparison of the efficacy shows that in plasma, sulfated DHPs are 3–6-fold and 

7–18-fold less active than enoxaparin in the APTT and thrombin generation assays, 

respectively. Studies in whole blood show that sulfated DHPs are 17–51-fold and 43–140-

fold less active than enoxaparin in TEG® and HAS™ assays, respectively. The precise 

origin of the significant difference between plasma and whole blood efficacies of sulfated 

DHPs is not clear and represents an important area to address in future design. Yet, except 

for the efficacy, the DHPs display inhibitory profiles similar to enoxaparin in the assays 

studied here. It is interesting that although sulfated DHPs and enoxaparin display different 

structures and mechanism of action, they exhibit similar anticoagulation profiles at 

significantly different concentrations. Further, the result that structurally-related DHPs 

possess significant differences in their anticoagulant potential bodes well for future 

improvement. These results suggest that sulfated DHPs are novel and interesting first 

generation anticoagulants from which advanced molecules should be possible to design 

through structural modifications. More studies are necessary to further understand 

similarities and differences, especially whether the DHPs can inhibit clot-bound thrombin, 

a desirable property found to be absent in LMWHs. Finally, toxicity studies are desirable 

to assess whether current sulfated DHPs induce adverse effects at the concentrations 

required for anticoagulant effect. 
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4.6 Tables 

Table 4. Effect of DHPs and enoxaparin on human plasma clotting times. 

 

 Concentration (µM) 

 2 × PTa 2 × APTTb

FDSO3 16.6 ± 1.7 4.1 ± 0.4 

SDSO3 33.3 ± 3.0 6.4 ± 1.2 

Enoxaparin 75.3 ± 2.0 1.2 ± 1.1 

CDSO3 13.1 ± 1.3 2.9 ± 0.8 

 

aThe normal human plasma PT was found to be 12.2 sec. b The uninhibited human plasma APTT 

was 29.5 sec. 
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Table 5. Parameters obtained from thromboelastograph (TEG®) study of 

sulfated DHPs and enoxaparin in human whole blood.a 

 

 TEG®  Parametersa

 
[DHP]O

Rb α c MAd Ge

 (µM) (min) (degrees) (mm) (Dynes/cm2)
No Anticoagulant 0 7.0 59.0 56.5 6456.5 

CDSO3 8.1 7.0 49.5 56.5 6494.5 
 16.2 10.5 38.0 47.0 4434.0 
 20.3 19 27.0 40.0 3333.5 
 24.3 21.5 15.0 29.5 2092.0 

FDSO3 6.5 7.0 60.0 55.0 6111.0 
 13.0 11.5 43.5 48.5 4708.5 
 19.6 13.5 34.5 44.0 3928.5 
 26.1 14.0 22.5 36.5 2874.0 
 32.7 19.0 13.5 27.5 1896.5 

SDSO3 22.8 8.5 50.5 51.5 5309.5 
 38.0 13.0 26 43 3772.0 
 45.6 21.0 17.0 32.5 2407.5 

Enoxaparin 0.3 8 49 51 5204.0 
 0.44 9.5 39.5 51 5204.0 
 0.6 11.5 43.0 47.0 4434.0 
 0.75 14.0 41.0 46 4259.5 
 0.89 17.0 36.5 47.0 4434.0 
 1.0 17.0 31.5 42.0 3620.5 

aTEG parameters were obtained in an automated manner from the TEG® coagulation analyzer. See 

Experimental Procedures for a description of the setup. bReaction time R is the time interval between the 

initiation of coagulation and the appearance of first detectable signal of no less than 2 mm in amplitude. 
cAngle α is the acute angle in degrees between an extension of the R value tracing and the tangent of the 

maximum slope produced by the TEG® tracing. dMaximum amplitude (MA) is the maximum distance the pin 

of TEG® moves at the end. eThe shear elastic modulus strength (G) is a calculated parameter (G = 5000×MA 

/ (100 – MA) and is a measure of clot strength. 
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Table 6. HAS™ parameters for sulfated DHPs and enoxaparin in human whole 

blood.a

 
 

 HAS™  Parametersa

 
[DHP]O

TGTb PCF c CEMd

 (µM) (min:sec) (Kdynes) (Kdynes/cm2)
No Anticoagulant 0 3:55 7.6 21.6 

CDSO3 8.0 3:24 6.8 18.7 
 10.0 3:43 5.1 14.2 
 12.0 5:55 3.5 9.4 
 14.0 9:14 2.4 4.5 

FDSO3 9.5 5:12 6.5 19.5 
 12.7 5:25 4.9 13.5 
 15.9 5:45 4.1 10.2 
 23.8 7:45 2.2 3.9 

SDSO3 14.8 3:35 6.5 17.8 
 18.5 4:24 5.7 14.8 
 27.8 6:55 3.2 7.0 
 37.0 13:00 1.2 1.3 

Enoxaparin 0.146 5:15 5.3 15.1 
 0.218 9:05 3.6 12.7 
 0.346 11:00 2.8 8.5 
 0.437 12:45 0.9 2.9 

 

aHAS™ parameters were obtained in an automated manner from the Hemostasis Analysis 
System. See Experimental Procedures for a description of the setup. bThrombin generation 
time is the time interval between the initiation of coagulation and the onset of detectable 
platelet contractile force. cPlatelet contractile force describes the forces generated by 
platelets during clot retraction. dClot elastic modulus is the ratio of the applied force 
(stress) to the measured displacement of the clot. 
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4.7 FIGURE LEGENDS 

Figure 47.  Structures of heparins (A) and sulfated DHPs (B). A) Fondaparinux is based 

on heparin pentasaccharide, while heparin and LMWHs are polydisperse, heterogeneous 

mixture of polysaccharide chains (MR ~13,000 and ~4,000 Da, respectively) arising due to 

variations in X, Y, Z and R groups. B) Sulfated DHPs possess a radically different 

structure from the heparins (and other anticoagulants) and are synthesized in two steps 

from the corresponding 4-hydroxycinnamic acid monomers, caffeic acid (CA), ferulic acid 

(FA) or sinapic acid (SA). The MR of the sulfated DHPs is in the range of 3,000–4,000 Da. 

Linkages, β-O-4 and β-5, are commonly present in sulfated DHPs (shown as shaded 

ovals). 

 

Figure 48.  A) Inhibition of thrombin generation in human plasma by CDSO3 in the range 

of 0 to 20 µM. Inset diagram shows three parameters – lag time, slope of thrombin 

explosion, and clot time – typically derived from the thrombin generation curve. B) and C) 

show the dependence of thrombin generation lag time and slope, respectively, on 

anticoagulant concentration. Solid lines represent trend lines used to obtain the 

concentration of anticoagulant necessary for doubling of lag time and 50% decrease in 

slope value. 
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Figure 49.  Comparison of the effect of sulfated DHPs and enoxaparin on clot formation in 

whole blood using TEG®. Inset in (A) shows a typical thromboelastogram expected of any 

anticoagulant. MA, R, α and G are parameters obtained from TEG® analysis. See Methods 

for details. (B) shows the variation in G as a function of concentration of the sulfated 

DHPs and enoxaparin. Solid lines are trend lines (not regression fits) from which 

concentration of anticoagulant needed to reduce shear elastic modulus G by 50% (shown 

as shaded line) of the starting value was derived. 

 

Figure 50.  Comparison of the effect of sulfated DHPs and enoxaparin on platelet function 

in whole blood using HAS™. A) shows selected HAS™ profiles obtained with FDSO3, B) 

and C) show the variation in PCF and CEM, respectively, as a function of concentration of 

the sulfated DHPs and enoxaparin. Solid lines are trend lines from which the concentration 

of anticoagulant needed to reduce PCF or CEM by 50% (shaded line) of the starting value 

was derived. 
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Figure 47 
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Figure 48 
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Figure 49 
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Figure 50 
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Chapter 5: A Novel Allosteric Pathway of Thrombin Inhibition 
EXOSITE II MEDIATED POTENT INHIBITION OF THROMBIN BY 
CHEMO-ENZYMATIC, SULFATED DEHYDROPOLYMERS OF 4-

HYDROXYCINNAMIC ACIDS 
 

5.1 Abstract 

Thrombin and factor Xa, two important pro-coagulant proteinases, can be regulated 

through direct and indirect inhibition mechanisms. Recently, we designed sulfated 

dehydropolymers (DHPs) of 4-hydroxycinnamic acids that displayed interesting 

anticoagulant properties [212]. To better understand their mechanism of action, we studied 

the inhibition of thrombin, factor Xa, factor IXa, and factor VIIa in the presence (indirect) 

and absence (direct) of antithrombin by CDSO3, FDSO3 and SDSO3, three analogs of 

sulfated DHPs. CDSO3 and FDSO3 displayed a 2–3-fold preference for direct inhibition of 

thrombin over factor Xa, while this preference for inhibiting thrombin over factor IXa and 

factor VIIa increases to 17–187-fold and >815-fold, respectively, suggesting a high level 

of specificity. Whereas CDSO3 and FDSO3 prefer the direct pathway for inhibiting 

thrombin and factor Xa, the indirect pathway is preferred for inhibition of factor IXa. 

Although structurally related to CDSO3 and FDSO3, SDSO3 inhibits all four enzymes 

primarily through the indirect inhibition mechanism. Competitive binding studies with a 

thrombin-specific chromogenic substrate, a fluorescein-labeled hirudin peptide, bovine 

heparin, enoxaparin, and a heparin octasaccharide suggest that CDSO3 preferentially binds 

in or near anion-binding exosite II of thrombin. Studies of the hydrolysis of H-D-
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hexahydrotyrosol-Ala-Arg-p-nitroanilide indicate that CDSO3 inhibits thrombin through 

allosteric disruption of the catalytic apparatus, specifically through the catalytic step. 

Overall, sulfated DHPs appear to be the first molecules that bind primarily in the region 

defined by exosite II and allosterically induce thrombin inhibition. The molecules are 

radically different in structure from all the current clinically used anticoagulants and thus, 

represent a novel class of potent dual thrombin and factor Xa inhibitors. 

 

5.2 Introduction 

The coagulation cascade is composed of two intertwined pathways, called the extrinsic and 

the intrinsic pathways, which operate in a highly complex, but tightly-regulated, manner to 

bring about controlled formation of the fibrin polymer. Several enzymes participate in this 

process, including factor IXa and factor VIIa, which belong to the intrinsic and extrinsic 

pathways, respectively, and thrombin and factor Xa, which belong to the common 

pathway. The cascade is regulated by several proteins present naturally in the plasma, of 

which antithrombin is a major regulator. 

 Antithrombin, a member of the serpin (serine proteinase inhibitor) family of 

proteins, primarily inhibits thrombin, factor Xa, and factor IXa, while also possibly 

inhibiting several other enzymes to a lesser extent. Yet, antithrombin is a rather poor 

inhibitor of these pro-coagulant enzymes and requires the presence of heparin to exhibit its 

anticoagulant potential. Heparin is a highly sulfated, polysaccharide that greatly enhances 

the rate of antithrombin inhibition of thrombin, factor Xa and factor IXa under 
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physiological conditions. This acceleration is the primary reason for heparin’s continued 

use as an effective anticoagulant for the past eight decades. Yet, heparin suffers from 

several limitations including enhanced risk for bleeding, variable patient response, heparin-

induced thrombocytopenia and the inability to inhibit clot-bound thrombin [21]. Low 

molecular weight heparins (LMWHs), derivatives of heparin with reduced polymeric 

length, and fondaparinux, a specific sequence of five saccharide residues (Figure 47A, 

page 192), have been introduced in the past decade as better mimics of full-length heparin. 

These new anticoagulants still possess risk for bleeding and are unable to inhibit clot-

bound thrombin [21]. 

 A major reason for the limitations of heparin therapy is its high negative charge 

density. Heparin (and LMWH) is a linear, co-polymer of glucosamine and uronic acid 

residues that are decorated with a large number of sulfate groups generating a complex, 

heterogeneous, polyanionic macromolecule (Figure 47A, page 192). This highly 

polyanionic polymer is capable of interacting with a large number of plasma proteins and 

cells, which likely induce many of the adverse effects of heparin [29]. 

 Apart from the indirectly acting heparins, several direct inhibitors have been put 

forward including argatroban, ximelagatran, and dabigatran for thrombin and, DX9065a 

and razaxaban for factor Xa [37]. Structurally, most direct inhibitors of thrombin (DTIs) 

and factor Xa contain a guanidine or an amidine group that mimic the critical arginine 

residue at the P-1 site of the proteinase recognition sequence [13]. DTIs and direct factor 

Xa inhibitors form major classes of clotting regulators that are considered to be superior to 

heparins primarily because of the expectation that they are likely to inhibit both circulating 
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and clot-bound enzymes. Yet, challenges exist in the development of these inhibitors 

including establishing enzyme-binding affinity that is not associated with excessive 

bleeding and avoiding liver toxicity [37]. 

 Mechanistically, the direct and indirect anticoagulants utilize different pathways of 

inhibition. While heparins require antithrombin to mediate their effect, DTIs and direct 

factor Xa inhibitors either bind in the active site or to an exosite on the enzyme to inhibit 

its proteolytic function [13]. With a goal of developing dual inhibitors of factor Xa and 

thrombin that are less polyanionic and more hydrophobic than heparins, we designed 

sulfated dehydropolymers (DHPs) (Figure 47, page 192). Three sulfated DHPs – CDSO3, 

FDSO3 and SDSO3 – were prepared in a simple, two-step chemo-enzymatic process 

involving horseradish peroxidase catalyzed oligomerization of 4-hydroxycinnamic acid 

monomers followed by the chemical sulfation of the resulting DHPs with triethylamine-

sulfur trioxide complex [212]. Preliminary studies suggested that the chemo-enzymatic 

sulfated DHPs were potent anticoagulants in vitro. The sulfated DHPs prolonged activated 

partial thromboplastin time and prothrombin time at concentrations equivalent to LMWH. 

The studies also suggested that CDSO3, FDSO3 and SDSO3 inhibited factor Xa and 

thrombin in an antithrombin–dependent as well as independent manner suggesting a 

potentially novel mode of inhibition [212]. 

 In this chapter, we report that CDSO3, FDSO3, and SDSO3 possess high 

selectivity for inhibiting thrombin and factor Xa over other enzymes of the coagulation 

cascade; CDSO3 inhibits thrombin through allosteric disruption of its catalytic apparatus; 

and preferentially binds the enzyme in or near the region formed by anion-binding exosite 
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II. Sulfated DHPs appear to be the first molecules that induce inhibition of pro-coagulant 

proteinases, thrombin and factor Xa, through exosite II. Our work suggests that sulfated 

DHPs are structurally, functionally and mechanistically a very interesting class of 

molecules that may lead to novel anticoagulants. 

 

5.3 EXPERIMENTAL PROCEDURES 

5.3.1 Proteins and Chemicals  

Sulfated dehydropolymers CDSO3, FDSO3 and SDSO3 (Figure 47B, page 192) were 

prepared in two steps from 4-hydroxycinnamic acid monomers, caffeic acid (CA), ferulic 

acid (FA) and sinapic acid (SA) using chemo-enzymatic synthesis described by Monien et 

al [212]. Human antithrombin (AT) was purchased from Molecular Innovations 

(Southfield, MI), while the human plasma proteinases, factor VIIa, factor IXa, factor Xa 

and α-thrombin, were purchased from Haematologic Technologies (Essex Junction, VT) 

and used as such. Stock solutions of proteins were prepared in 20 mM sodium phosphate 

buffer, pH 7.4, containing 100 mM NaCl and 2.5 mM CaCl2 (AT and thrombin) or 5 mM 

MES buffer, pH 6.0 (factor Xa). Factor VIIa stock solutions of proteins were prepared in 

25 mM HEPES buffer, pH 7.4, containing 100 mM NaCl and 5 mM CaCl2, while factor 

IXa stock solutions were prepared in 5 mM MES buffer, pH 5.5 containing 150 mM NaCl. 

Chromogenic substrates Spectrozyme TH (H-D-hexahydrotyrosol-Ala-Arg-p-nitroanilide), 

Spectrozyme FXa (Methoxycarbonyl-D-cyclohexylglycyl-Gyl-Arg-p-nitroanilide), 

Spectrozyme FIXa (D-Leu-Phe-Gly-Arg-p-nitroanilide) and Spectrozyme FVIIa 

(methanesulphonyl-D-cyclohexylalanyl-butyl-Arg-p-nitroanilide) were purchased from 
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American Diagnostica (Greenwich, CT). A low molecular weight heparin (MW 5,060 Da) 

used in plasma assays was purchased from Sigma (St. Louis, MO), while enoxaparin (MW 

4,500 Da, from Aventis Pharmaceuticals) and fondaparinux (MW 1,727 Da, from 

GlaxoSmithKline) were pharmaceutical grade. Heparin octasaccharide H8 was from 

Dextra Laboratories (Reading, UK). Thrombin substrate p-nitrophenyl-p’-

guanidinobenzoate (NPGB) and active site fluorophore p-aminobenzamidine (PABA) were 

purchased from Sigma Chemicals (St. Louis, MO) and used as such. Tyr63-sulfated 

hirudin-(54-65) labeled with 5-(carboxy)fluorescein ([5F]-Hir[54-65](SO3
-)) was prepared 

as described earlier [209]. All other chemicals were analytical reagent grade from either 

Sigma Chemicals (St. Louis, MO) or Fisher (Pittsburgh, PA) and used without further 

purification. 

 

5.3.2 Physico-chemical Properties of CDSO3, FDSO3 and SDSO3  

The weight average molecular weight (MW) of the unsulfated parent dehydropolymers CD, 

FD and SD were determined by Monien et al. [212] using non-aqueous size-exclusion 

chromatography (Table 7, page 220). The MW values suggest that an average of 12.7, 15.5, 

and 14.4 monomer units are present in CD, FD and SD, respectively. Sulfate composition 

of the sulfated DHPs was determined by elemental analysis and found to be 0.40, 0.30 and 

0.38 sulfate groups per monomer unit [212]. This implies that an average of 5.1, 4.7, and 

5.5 sulfate groups per average DHP chain are present in CDSO3, FDSO3, and SDSO3, 

respectively. Thus, the MW value of the sulfated DHPs was calculated to be 3320, 4120, 

and 3550 Da for CDSO3, FDSO3, and SDSO3, respectively (Table 7, page 220). 
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5.3.3 Direct and Indirect Inhibition of Coagulation Proteinases  

Both direct and indirect inhibition of thrombin, factor Xa, factor IXa, and FVIIa by 

sulfated DHPs was determined by chromogenic substrate hydrolysis assays [211, 213, 231, 

232]. For these assays, 10 µL DHP at concentrations ranging from 0.035 to 10,000 µg/mL 

was diluted with 930 µL of the appropriate buffer in PEG 20,000-coated polystyrene 

cuvettes. The buffers used in these experiments include 20 mM Tris-HCl buffer, pH 7.4, 

containing 100 mM NaCl, 2.5 mM CaCl2 and 0.1 % polyethylene glycol (PEG) 8000 for 

thrombin and factor Xa; 100 mM HEPES buffer, pH 8, containing 100 mM NaCl and 10 

mM CaCl2 for factor IXa [231]; and 25 mM HEPES buffer, pH 7.4, containing 100 mM 

NaCl and 5 mM CaCl2 for factor VIIa [232].  Following the preparation of the sulfated 

DHP solution, 10 µL of the proteinase solution was added to give 1 to 10 nM initial 

enzyme concentration and the cuvette incubated for 10 minutes. Thrombin, factor Xa and 

factor VIIa assays were incubated at 25°C, while factor IXa assays were incubated at 20°C. 

Following incubation, 50 µL of 2 mM chromogenic substrate, Spectrozyme TH, FXa, 

FVIIa or Spectrozyme FIXa, was rapidly added and the residual enzyme activity was 

determined from the initial rate of increase in absorbance at 405 nm. Relative residual 

proteinase activity at each concentration was calculated using the activity measured under 

otherwise identical conditions, except for the absence of the sulfated DHP. Indirect 

inhibition of thrombin by sulfated DHPs was performed at a fixed 100 nM concentration of 

antithrombin, while for indirect inhibition of factors VIIa, IXa and Xa a 200 nM 

concentration of the serpin was used. Except for the presence of antithrombin, the indirect 
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inhibition assays were performed in an otherwise identical manner to the direct inhibition 

assays. Logistic equation I was used to fit the dose-dependence of residual proteinase 

activity to obtain IC50. 

 

HSDHPIC
OM

O
O

YY
YY )][(log 50101 −+

−
+=  Eq. I 

 

 In this equation Y is the fractional residual proteinase activity, YM and YO are the 

maximum and minimum possible values of the proteinase activity, IC50 is the 

concentration of the inhibitor that results in 50% inhibition of enzyme activity, and HS is 

the Hill slope. 

 

5.3.4 Michaelis-Menten Kinetics of Spectrozyme TH Hydrolysis by Thrombin in the 

Presence of CDSO3  

The initial rate of Spectrozyme TH hydrolysis by 1 nM thrombin was monitored from the 

linear increase in absorbance at 405 nm corresponding to less than 10% consumption of 

the substrate. The initial rate was measured as a function of various concentrations of the 

substrate (0.2 to 20 µM) in the presence of fixed concentration of CDSO3 (10–100 nM) in 

20 mM Tris-HCl buffer, pH 7.4, containing 100 mM NaCl, 2.5 mM CaCl2 and 0.1 % 

PEG8000 at 25 OC. The data was fitted by the Michaelis-Menten equation to determine 

KM,app and VMAX. To calculate kCAT from VMAX, active site titration of thrombin with NPGB 

was performed, according to the reported procedure [233], and the change in extinction co-

efficient of 9920 M-1cm-1 [234, 235] was used for the release of p-nitroaniline. 
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5.3.5 Michaelis-Menten Kinetics of Spectrozyme TH Hydrolysis by Thrombin in the 

Presence of [5F]-Hir[54-65](SO3
-)  

The initial rate of Spectrozyme TH hydrolysis by 1 nM thrombin was monitored from the 

linear increase in absorbance at 405 nm corresponding to less than 10% consumption of 

the substrate. The initial rate was measured as a function of various concentrations of the 

substrate (0.4 to 20 µM) in the presence of fixed concentration of [5F]-Hir[54-65](SO3
-) 

(8.6–103.2 nM) in 20 mM Tris-HCl buffer, pH 7.4, containing 100 mM NaCl, 2.5 mM 

CaCl2 and 0.1 % PEG8000 at 25 OC. The data were analyzed as described above. 

 

5.3.6 Competitive Binding Studies with [5F]-Hir[54-65](SO3
-), an Exosite I ligand 

CDSO3-dependent thrombin inhibition studies in the presence of [5F]-Hir[54-65](SO3
-) 

were performed in a manner similar to that described above for direct thrombin inhibition 

using the chromogenic substrate hydrolysis assay. A 950 µL solution containing CDSO3, 

[5F]-Hir[54-65](SO3
-) and thrombin, each at their required concentrations, in 20 mM Tris-

HCl buffer, pH 7.4, containing 100 mM NaCl, 2.5 mM CaCl2 and 0.1 % PEG 8000 was 

incubated at 25 OC in PEG 20,000-coated polystyrene cuvettes for 10 minutes. Following 

incubation, 50 µL of 2 mM Spectrozyme TH was added and the initial change in 

absorbance at 405 measured. A 4 nM concentration of thrombin was found to give 

sufficient signal at various concentrations of the fluorescent peptide for reproducible 

results. The dose-dependence of the fractional residual proteinase activity at each 

concentration of the competitor was fitted by equation I to obtain the apparent 
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concentration of CDSO3 required to reduce thrombin activity to 50% of its initial value 

(IC50,app). 

 

5.3.7 Competitive Binding Studies with Anion-Binding Exosite II Ligands  

Exosite II competition experiments were performed in a manner similar to that described 

above, except for the presence exosite II competitors. Briefly, residual thrombin activity 

was measured in a spectrophotometric assay following 10 minute incubation of CDSO3, 

exosite II competitor and thrombin, each at the required concentration, in 20 mM Tris-HCl 

buffer, pH 7.4, as described above. Exosite II competitor ligands included bovine heparin, 

enoxaparin and H8. The MW of bovine heparin and enoxaparin were assumed to be 15000 

and 4500 Da, respectively, as reported in the literature [209, 236]. The dose-dependence of 

the fractional residual proteinase activity at each concentration of the competitor was fitted 

by equation I to obtain IC50,app. The affinities of bovine heparin, enoxaparin and H8 for 

thrombin under the conditions utilized for inhibition experiments were measured 

spectrofluorometrically using p-aminobenzamidine (PABA), as reporter of interaction 

following published procedures [237]. The interaction of exosite II GAG ligands with 

thrombin–PABA complex results in a saturable quenching in fluorescence at 370 nm (~16 

%, λEX = 345 nm), which can be fitted by the quadratic binding equation to derive the KD 

for the interaction. 
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5.4 RESULTS 

5.4.1 Structure of Sulfated Dehydropolymers (DHPs)  

The sulfated DHP molecules studied in this work were prepared chemo-enzymatically in 

two steps from 4-hydroxy cinnamic acid monomers, caffeic acid, ferulic acid and sinapic 

(Figure 47B, page 192). Horseradish peroxidase-catalyzed oxidative coupling followed by 

sulfation of the available hydroxyl and phenolic groups gives the corresponding sulfated 

DHPs, CDSO3, FDSO3, and SDSO3, in reproducibly good yields [212]. Overall, these 

sulfated DHPs are a mixture of many oligomeric species that range in size from 4–15 

monomer units and contain several inter-monomer linkages, including β-O-4, β -5, β - β 

and 5-5. Of these, β -O-4 and β -5 linkages form the major proportion (Figure 47B, page 

192), except for SDSO3 (see below). 

 Although heparins and sulfated DHPs belong to structurally distinct class of 

molecules, with respect to the properties of polydispersity and microheterogeneity, they 

have much in common. Each preparation of both these types of molecules contains 

numerous sequences possessing different chain lengths and fine structure. Yet, the level of 

sulfation in the sulfated DHPs is significantly lower than that found in heparins. Whereas 

the three sulfated DHPs studied here have an average of 1 sulfate group for every 2–3 

monomer residues, heparins possess an average of 2–2.5 sulfate groups for every 

disaccharide (Table 7, page 220). More importantly, the backbone of sulfated DHPs is 

composed of a number of aromatic rings, a feature completely absent in heparin. Thus, the 

sulfated DHPs are significantly more hydrophobic than heparins, while heparins have 

significantly more anionic character. Finally, whereas unfractionated heparin with a MW of 
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~15,000 Da is considerably larger, sulfated DHPs (~2500–4000 Da) are comparable to 

enoxaparin (4,500 Da) and fondaparinux (~1,700 Da) (Table 7, page 220). 

 Although all three sulfated DHPs possess several types of inter-monomer linkages, 

structural constraints in the SA monomer do not allow the formation of 5-5 and β-5 inter-

monomer linkages in the oligomer [212]. Thus, the predominant inter-monomeric linkage 

in SDSO3 is β-O-4 with some proportion of β-β. This implies that the SDSO3 

dehydropolymer is structurally more homogeneous, or less diverse, than CDSO3 and 

FDSO3. 

 

5.4.2 Sulfated DHPs Inhibit Factor Xa and Thrombin in the Presence and Absence of 

Antithrombin  

To understand the origin of the anticoagulant activity of sulfated DHPs, we previously 

performed some initial studies on direct and indirect inhibition of factor Xa and thrombin, 

two key enzymes of the coagulation cascade [212]. These studies have been extended and 

compared with two clinically used anticoagulants, enoxaparin and fondaparinux. Inhibition 

of these enzymes was studied by measuring the residual enzyme activity following 

incubation with sulfated DHPs under pseudo-first order conditions for a fixed time in the 

presence and absence of a fixed concentration of human plasma antithrombin. The residual 

enzyme activity was measured by spectrophotometric determination of the initial rate of 

hydrolysis of chromogenic substrate. Enoxaparin (and a LMWH from Sigma) was used as 

a reference for both factor Xa and thrombin, while fondaparinux served as an additional 

reference for factor Xa. 
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 As the concentration of the sulfated DHP was increased, the residual factor Xa or 

thrombin activity in the absence of antithrombin progressively decreased (Figure 51, page 

228). In striking contrast, enoxaparin and fondaparinux displayed no inhibition even at 

concentrations higher than 100 µM (not shown). The decrease in activity was fitted by the 

logistic dose–response equation I to derive the IC50 value, the concentration of the inhibitor 

that results in 50% reduction in enzyme activity (Table 8, page 221-222). The three 

sulfated DHPs inhibited factor Xa and thrombin with IC50 values in the range of 34–244 

nM and 18–94 nM, respectively (Figure 51, Table 8). Of the three sulfated DHPs, CDSO3 

and FDSO3 are nearly 3.2–7.2-fold better than SDSO3. This suggests that the sulfated 

DHPs studied here are potent direct inhibitors of factor Xa and thrombin. 

 A decrease in enzyme activity with increasing concentrations of the sulfated DHPs 

was also observed in the presence of antithrombin (Figure 51, page 228). These indirect 

inhibition curves yielded IC50 values of 53–133 nM against factor Xa. In contrast, 

enoxaparin, a LMWH (from Sigma) and fondaparinux displayed IC50 values of 3.4, 6.9 and 

1.9 nM, respectively (Table 8, page 221-222). This suggests that the sulfated DHPs are 

approximately 28–70-fold weaker inhibitors of factor Xa in the presence of antithrombin 

than the three reference molecules. Likewise, the IC50 values for indirect inhibition of 

thrombin by sulfated DHPs were found to be in the range of 45–71 nM, approximately 24–

37-fold lower than that for enoxaparin and a Sigma LMWH (Table 8, page 221-222). 

 A closer look at the data highlights differences in the enzyme inhibition by the 

sulfated DHPs. Both CDSO3 and FDSO3 are better at inhibiting factor Xa and thrombin 

directly in comparison to that in the presence of antithrombin. Whereas the IC50 value 
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against factor Xa increases 1.6–2.9-fold for CDSO3 and FDSO3 in the presence of 

antithrombin as compared to that in its absence, for SDSO3 the IC50 value decreases ~2.5-

fold. Although the indirect and direct inhibition pathways are expected to complement 

each other, it appears that the antithrombin-mediated pathway is a competing side reaction 

for CDSO3 and FDSO3, but not for SDSO3. It is possible that antithrombin competes with 

thrombin (and factor Xa) for CDSO3 and FDSO3, but possesses relatively weaker 

inhibition properties in complex with the DHPs, thereby reducing the concentration of free 

sulfated DHPs for direct reaction with thrombin (or factor Xa). More work is needed to 

clarify the proportion of contribution of the indirect pathway to the overall process of 

inhibition by CDSO3 and FDSO3. Yet, the current work indicates that CDSO3 and FDSO3 

prefer to inhibit thrombin and factor Xa through the direct pathway, while SDSO3 appears 

to utilize both pathways for thrombin and factor Xa inhibition. 

 

5.4.3 Effect of Sulfated DHPs on the Direct and Indirect Inhibition of Factor IXa and 

Factor VIIa  

To determine whether the sulfated DHPs inhibit other enzymes of the coagulation cascade, 

we studied direct and indirect inhibition of factor IXa and factor VIIa, enzymes of the 

intrinsic and extrinsic pathways, respectively. The inhibition was studied in a manner 

similar to that reported in the literature, except for the presence of sulfated DHPs (or 

reference compound) in the reaction mixture [231, 232]. In the absence of antithrombin, 

CDSO3 and FDSO3 inhibited factor IXa with IC50 values of 3.4 and 0.5 µM, while 

inhibition of factor VIIa was not detectable (Table 8, page 221-222). Likewise, in the 
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direct inhibition assay SDSO3 was essentially inactive against both factor IXa and factor 

VIIa (Figure 52, page 229). These results suggest that CDSO3 and FDSO3 are better direct 

inhibitors of factor Xa and thrombin with 7–99-fold and 17–187-fold, respectively, higher 

selectivity over factor IXa. The level of specificity of direct inhibition against factor VIIa 

is even greater (>319-fold). 

 In the presence of antithrombin, all three sulfated DHPs displayed reasonably good 

inhibition of factor IXa with IC50 values in the range of 0.6–4.1 µM, while enoxaparin 

showed an IC50 value of 56 nM indicating a 11–73-fold greater potency (Table 8, page 

221-222). Against factor VIIa, the presence of antithrombin did not induce any inhibition 

with CDSO3 and FDSO3 (Table 8, page 221-222). Together, these results suggest that 

CDSO3 and FDSO3 are better inhibitors of factor Xa and thrombin in the presence of 

antithrombin than factor IXa by a factor of 4.5–78-fold and 8–78-fold, respectively. This 

specificity of indirect inhibition increases much more when compared to factor VIIa 

(>178). 

 As an indirect inhibitor, SDSO3 displayed fairly potent inhibition of factor VIIa 

with an IC50 value of 356 nM (Figure 52, Table 8). In comparison, the enoxaparin–

antithrombin complex was completely inactive against factor VIIa even at concentrations 

as high as 222 µM. This result suggests that SDSO3 induces antithrombin to become a 

better inhibitor of factor VIIa. Overall, SDSO3 is the only sulfated DHP studied that 

inhibits all four enzymes with good to reasonable potency in the presence of antithrombin 

(Table 8). Thus, SDSO3 appears capable of utilizing both the direct and indirect inhibition 

pathways. 
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5.4.4 CDSO3 Inhibits Thrombin by Disrupting its Catalytic Apparatus  

To understand the molecular basis for sulfated DHPs inhibiting thrombin, we studied the 

Michaelis-Menten kinetics of Spectrozyme TH hydrolysis at pH 7.4 and 25 OC in the 

presence of CDSO3, a representative sulfated DHP. Plots of the initial rates versus 

Spectrozyme TH concentration were hyperbolic, as expected (Figure 53, page 230), from 

which the apparent Michaelis constant (KM,app) and maximal velocity of the reaction 

(VMAX) were derived (Table 9, page 223). The results show that although the concentration 

of CDSO3 increased from 0 nM to 300 nM, the KM,app value remained essentially invariant 

in the range of 2.2 to 0.9 µM. This suggests that the presence of CDSO3 does not much 

affect the binding of the chromogenic substrate to the active site of the enzyme. In contrast, 

the VMAX value decreased steadily from a high of 21.5 mAbsU/min in the absence of 

CDSO3 to a low of 9.5 mAbsU/min at 300 nM CDSO3 (Figure 53, Table 9) corresponding 

to a decrease in kCAT value from 36.1 to 16.0 s-1, respectively. Thus, the presence of 

CDSO3 brings about structural changes in the active site of thrombin, which do not alter 

the formation of the thrombin–Spectrozyme TH Michaelis complex, but significantly 

reduce the rate of conversion of the complex into products. 

 

5.4.5 CDSO3 Does Not Interact with Thrombin in the Anion-Binding Exosite I 

To test whether CDSO3 binds in the anion-binding exosite I, we sought to measure the 

effect of a hirudin-based peptide, [5F]-Hir[54-65](SO3
-), on the IC50 value of CDSO3-

inhibition of thrombin. Previous studies indicate that [5F]-Hir[54-65](SO3
-) binds thrombin 
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with 28 nM affinity in exosite I with 1:1 stoichiometry [238]. However, the effect of this 

exosite I ligand on the catalytic apparatus of thrombin was not clear. Literature reports on 

studies with the parent Hir[54-65](SO3
-), which is also known to bind in exosite I of 

thrombin, show that the kCAT/KM value increases or decreases approximately 2-fold 

depending on the type of chromogenic substrate [144]. Thus, we first determined the effect 

of [5F]-Hir[54-65](SO3
-) on the thrombin hydrolysis of Spectrozyme TH using the 

standard Michaelis-Menten conditions at pH 7.4. As the concentration of the exosite I 

ligand was increased to 103.6 nM, the KM remained essentially constant in the range of 1.2 

to 1.7 µM, while the VMAX increased steadily from 18.7 to 31.1 mAbs/min (Figure 54, 

Table 10). This suggested that [5F]-Hir[54-65](SO3
-) increased the catalytic efficiency of 

Spectrozyme TH hydrolysis arising specifically from a kCAT effect. 

 The [5F]-Hir[54-65](SO3
-)-dependent enhancement and the CDSO3-dependent 

reduction in rate of Spectrozyme TH hydrolysis (kCAT) afforded a fine experimental setup 

to study competition between these two ligands. Thus, we measured the IC50 values of 

thrombin inhibition by CDSO3 in the presence of the dodecapeptide over a concentration 

range up to 3.7-fold higher than the KD of the thrombin-[5F]-Hir[54-65](SO3
-) complex 

[209]. The IC50,app values were measured in the standard dose-response assay, which we 

had used to detect thrombin inhibition. Figure 54B (page 231) shows the change in the 

dose-response profile of CDSO3 inhibiting thrombin in the presence of [5F]-Hir[54-

65](SO3
-) at pH 7.4 and 25 OC. As the concentration of the dodecapeptide was increased 

from 0 to 103.6 nM, IC50,app increased from 28 to 57.8 nM (Table 10, page 224). This 

represents a 2.1-fold change in IC50,app value for a 3.7-fold increase in concentration over 
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the KD of the exosite I competitor. Additionally, the change in IC50,app value appears to be 

not linear with the concentration of [5F]-Hir[54-65](SO3
-). For example, the IC50,app value 

increases ~1.7-fold at 8.6 nM dodecapeptide (0.3×KD), which is followed by much slower 

increases (Table 10, page 224). These small changes suggest that that the interaction of 

[5F]-Hir[54-65](SO3
-) with thrombin does not affect CDSO3 inhibition of thrombin to a 

significant extent. Thus, it appears that CDSO3 does not preferentially bind thrombin in 

anion-binding exosite I. 

 

5.4.6 CDSO3 Interacts with Thrombin in or Near Anion-Binding Exosite II  

To assess whether CDSO3 binds in the region formed by anion-binding exosite II of 

thrombin, we resorted to the enzyme inhibition assay described above. Exosite II ligands, 

bovine heparin, enoxaparin and heparin octasaccharide H8, did not affect the proteolytic 

activity of thrombin (not shown), while CDSO3 is a potent inhibitor. Thus, if CDSO3 

binds in or near the GAG binding site, its inhibition potency is expected to decrease as a 

function of the concentration of the GAG competitor. Figure 55A (page 232) shows the 

change in the dose-response curve of CDSO3 inhibiting thrombin in the presence of H8 at 

pH 7.4 and 25 OC. As the concentration of H8 was increased to 26.3 µM, the IC50 value of 

thrombin inhibition increases from 28 to 414 nM (Table 11, page 225). Less dramatic, but 

significant, changes in dose-response profiles were also observed for bovine heparin and 

enoxaparin (not shown), corresponding to increases in apparent IC50 values (Table 11), 

suggesting that all three GAG ligands compete with CDSO3. 
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 A more quantitative test of competitive binding is the Dixon-Webb relationship 

(Eq. II), which predicts the effect of competition on a measured parameter, e.g., KD or 

IC50. In this equation, KGAG is the dissociation constant of thrombin–GAG (bovine heparin, 

H8 or enoxaparin) interaction. 

 

)
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 The equilibrium dissociation constants (KGAG) of bovine heparin, enoxaparin and 

H8 were determined independently by fluorescence titration with the active site probe, 

PABA, and found to be 15.6±3.1 µM, 6.6±0.5 µM and 11.3±1.4 µM, respectively, under 

otherwise identical conditions (not shown). Using KGAG and Dixon-Webb equation II, the 

IC50,app values for CDSO3 inhibition of thrombin in the presence of H8, bovine heparin and 

enoxaparin were calculated (Table 11, page 225). Figure 55B (page 232) shows a 

comparison of the observed and predicted IC50,app. While the measured IC50,app values are 

higher than those predicted for H8 competition, while the correspondence is better for 

competition with bovine heparin. For enoxaparin, equation II predicts a weaker 

competitive effect than that observed (Table 11). Yet, the competitive effect of all three 

exosite II ligands is much greater than that observed for exosite I ligand. The precise origin 

of the more-than-predicted competitive effect of exosite II ligands is difficult to pinpoint at 

this time given the heterogeneity of CDSO3 preparation, however the results support the 

notion that CDSO3 binds thrombin in or near anion-binding exosite II. 
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5.5 DISCUSSION 
A fundamental objective in designing sulfated DHPs was to significantly reduce the highly 

polyanionic nature of heparin that is arguably the origin of most of its adverse effects, yet 

effectively mimic its anticoagulant action. This is a major challenge considering that work 

performed in the past 30 years has not been able to put forward a single new heparin 

mimic, which is not a saccharide derivative. In fact, the new structures put forward in this 

category are all heparin derivatives, e.g., LMWH, fondaparinux or idraparinux [187]. 

 Whereas heparin possesses a hydrophilic polysaccharide scaffold, sulfated DHPs 

are based on the hydrophobic ‘lignin’ scaffold. Natural lignins are plant constituents made 

up of phenylpropanoid monomers that offer the capability of introducing a limited number 

of sulfate groups [239]. We reasoned that introducing carboxylate groups in the basic 

lignin scaffold will offer an avenue in the future of being able to introduce oral 

bioavailability through the traditional carboxylic acid ester-based pro-drug approach. 

Structural studies performed earlier suggested that the sulfated DHPs are hydrophobic 

molecules containing an average of 0.8–0.9 anionic (sulfate and carboxylate) groups per 

monomer [212], while for heparins this number is approximately 1.78 (Table 7, page 220). 

Thus, the sulfated DHPs studied here are structurally unlike heparin (or heparin 

derivatives). In fact, these molecules are completely different from the anticoagulants used 

in the clinic, or currently being evaluated for clinical use, including hirudin, bivalirudin, 

argatroban, dabigatran and ximelagatran. 
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 Previous work indicated that sulfated DHPs prolong plasma clotting times with 

potency in the range of LMWHs [212]. Among the three sulfated DHPs, CDSO3 was 

found to possess superior anticoagulant activity over FDSO3, which in turn was more 

potent than SDSO3. Current work reveals the basis of this anticoagulant action, while also 

uncovering interesting similarities and differences. The three sulfated DHPs inhibit two 

critical enzymes of the coagulation cascade, factor Xa and thrombin. Interestingly, the 

sulfated DHPs inhibit these enzymes in the absence of antithrombin (Figure 51, Table 8). 

This represents a major departure from the expected mechanism of action because the 

sulfated DHPs were designed to mimic heparin function. The nanomolar IC50 values of the 

sulfated DHPs suggest highly potent inhibition. This unexpected observation implies that 

sulfated DHPs are perhaps the first molecules outside of the peptides or peptidomimetics 

that show direct inhibition of thrombin and factor Xa [13, 37]. 

 The two most active sulfated DHPs, CDSO3 and FDSO3 display a 1.9–2.6-fold 

preference for direct inhibition of thrombin over factor Xa (Table 8, page 221-222). This 

preference for directly inhibiting thrombin increases 17–187-fold and >815-fold over 

factor IXa and factor VIIa, respectively. Thus, CDSO3 and FDSO3 selectively inhibit 

thrombin (and factor Xa) utilizing the direct inhibition pathway. In contrast, SDSO3 is 

better at inhibiting thrombin and factor Xa through the indirect pathway in comparison to 

the direct pathway by 2.1- and 2.5-fold, respectively. In terms of the preference of its target 

in the presence of antithrombin, SDSO3 inhibits thrombin nearly 2.1-fold better than factor 

Xa, while it prefers thrombin over factor IXa and VIIa by a factor of ~44- and 8-fold, 
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respectively. These results indicate considerable selectivity in the indirect inhibition of 

thrombin and factor Xa by SDSO3. 

 The 2.0 and 0.35 µM IC50 values of SDSO3 against factor IXa and VIIa in the 

presence of antithrombin indicate considerable potency arising from this interesting 

sulfated DHP. In fact, perhaps the most interesting property of SDSO3 appears to be factor 

VIIa inhibition. It is the only molecule studied here that exhibits indirect factor VIIa 

inhibition. Alternatively, SDSO3 is able to induce antithrombin to inhibit factor VIIa, 

while enoxaparin (and CDSO3 or FDSO3) fails miserably under similar conditions. The 

molecular basis for this induction of antithrombin action is unclear at present, but perhaps 

represents a new opportunity for designing selective factor VIIa inhibitors. 

 Comparison of the IC50 values in indirect assays reveals that the sulfated DHPs are 

22–70-fold weaker than the clinically used anticoagulants, enoxaparin and fondaparinux. 

Considering that sulfated DHPs represent only the first attempt at designing a novel non-

heparin-like structure that exhibits anticoagulation, this potency is remarkable. Also of 

interest is the observation that in presence of antithrombin, SDSO3 exhibits reasonably 

good inhibition of all four pro-coagulant enzymes studied here. Thus, considering that 

SDSO3 is also a direct inhibitor of thrombin and factor Xa, it appears that this sulfated 

DHP can utilize both pathways of enzyme inhibition. This observation, if rigorously found 

to be true, would represent the first example of an anticoagulant possessing a dual 

mechanism. 

 All three sulfated DHPs are heterogeneous species and it is difficult to pinpoint 

structural features that govern anticoagulant action at this time. Just as a specific five-
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residue sequence in heparin was found to be the basis of nearly all anticoagulant activity, it 

is likely that specific structure(s) in CDSO3 and FDSO3 exist that possess(es) nearly all 

the direct inhibition activity of the heterogeneous preparations. The observation that 

thrombin and factor Xa are preferentially inhibited suggests that specific structural features 

in CDSO3 and FDSO3 may be involved in this recognition. 

 Competitive binding studies with exosite I and exosite II ligands indicate that 

CDSO3 primarily binds in or near the region formed by exosite II. An important point to 

recall is that CDSO3 is a heterogeneous anionic molecule implying that certain sequences 

in CDSO3 may be still be interacting with exosite I of thrombin. However, the competitive 

binding data suggest that such an interaction with exosite I is likely to be of lower affinity. 

Studies on the hydrolysis of Spectrozyme TH indicate that CDSO3 disrupts the catalytic 

apparatus without binding to the active site. Thus, CDSO3 is an allosteric inhibitor of 

thrombin function. Although FDSO3 and SDSO3 differ from CDSO3 in terms of the fine 

structure, their overall similarity suggests that these oligomers may also bind thrombin 

exosite II. In a similar manner, these sulfated DHPs may be interacting with factor Xa in 

its anion-binding exosite II, which is known to recognize GAG ligands with an affinity 

similar to thrombin [240]. A supporting evidence for exosite II recognition is the 

observation that, unlike thrombin, exosite I in factor Xa is not an anion-binding site, but a 

cation-binding site [241]. 

 Exosite II binding of CDSO3 also partially explains the observed weak direct 

inhibition of factor IXa and essentially no inhibition of factor VIIa. Factor IXa is known to 

possess a heparin-binding exosite II [213, 231], analogous to thrombin, which is likely to 
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be the CDSO3 recognition site. However, differences in the structures of exosite II in 

thrombin and factor IXa may introduce differences in the binding affinities of the sulfated 

DHPs. Finally, factor VIIa is not known to possess an anion-binding region, similar to 

exosite II of thrombin, explaining the lack of inhibition induced by CDSO3. 

 Exosite II in thrombin is known to bind GAGs and haemadin [140]. GAG binding 

to thrombin is non-specific, not high-affinity and non-inhibitory [237, 242]. On the other 

hand, haemadin is a peptide that binds thrombin with nM affinity, inhibits its proteolytic 

activity, but also binds in the active site [150]. Thus, our work puts forward perhaps the 

first organic molecules that primarily recognize anion-binding exosite II of thrombin (and 

possibly factor Xa) with nM potency and induce inhibition. 

 In conclusion, our work demonstrates that chemo-enzymatically prepared sulfated 

DHPs display interesting anticoagulant properties. The anticoagulant potency of the 

sulfated DHPs compares favorably to the clinically used anticoagulants, enoxaparin and 

fondaparinux. Whereas CDSO3 and FDSO3 preferentially utilize the antithrombin-

independent (direct) pathway, structurally related SDSO3 can also utilize the antithrombin-

dependent (indirect) pathway. All three novel anticoagulants selectively inhibit thrombin 

and factor Xa of the coagulation cascade through an interaction with anion-binding exosite 

II that allosterically disrupts the catalytic apparatus of the enzyme. This represents a novel 

mechanism of thrombin (and factor Xa) inhibition. Sulfated DHP molecules possess a 

novel structural scaffold, which is completely different from all the current clinically used 

anticoagulants, including the heparins, coumarins, hirudins and arginine-peptidomimetics. 
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Thus, sulfated DHPs represent a novel class of potent dual factor Xa and thrombin 

inhibitors. 

 

5.6 Tables 

Table 7. Physical properties of DHPs from cinnamic acid derivatives. 

 

 

Range of 
Oligomer 

Chain 
Lengtha

Weight 
Average 

Oligomer 
Sizeb

Sulfate Groups 
per Monomerc

Calculated 
MW

d

    (Da) 

CDSO3 5 – 13 12.7 0.40 ~3,320 
FDSO3 8 – 15 15.5 0.30 ~4,120 
SDSO3 4 – 11 14.4 0.38 ~3,550 

Enoxaparin 6 – 27e 12.6 1.14e ~3,800e

Heparin 10 – 80e ~40 1.28f ~13,000 
 
aTaken from [212]. bSize obtained by dividing the average molecular weight by the molecular 

weight of acetylated monomers, caffeic acid (221 Da), ferulic acid (235 Da) and sinapic acid (208 

Da). cAverage number of sulfates per monomeric unit was obtained from elemental sulfur 

composition [212]. dCalculated using the formula MW = (MW of unsulfated DHP) + 102 × (average 

oligomer size) × (sulfate groups per oligomer). MW of unsulfated DHPs was previously obtained 

using non-aqueous SEC and found to be 2,800 Da (CD), 3,650 (FD), and 2,990 (SD). eTaken from 

[230]. fDerived from [237]. 
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Table 8. IC50 values for sulfated DHPs, enoxaparin, fondaparinux and a LMWH 
(Sigma) inhibiting coagulation enzymes in the presence and absence of antithrombin. 

 

aThe IC50 values for direct and indirect inhibition of factor Xa, thrombin, factor IXa and 

factor VIIa were determined at pH 7.4 and 25 OC in appropriate buffers through 

spectrophotometric measurement of residual proteinase activity following incubation of the 

enzyme and the inhibitors for a fixed time period of 10 minutes. bErrors represent ± 2 S. E.  
cAn estimated value based on the highest concentration of the anticoagulant used in the 

experiment. dNo inhibition was observed. 
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Table 9. Hydrolysis of Spectrozyme TH by human α-thrombin in the presence 

 

[CDSO3]O KM kCAT
a

of CDSO3.

(nM) (µM) s-1)(  

0 2.2 b 36. .2c

10.5 ± ±
 ± 0.2 1 ± 1

1.1  0.1 
±

28.2  0.8 
±30 1.4  0.1 

±
25.9  0.3 

±105 1.3  0.1 
±

19.2  0.7 
±300 0.9  0.1 

 
16.0  0.3 

  
 
aobtained from VMAX as described in ‘Experimental Procedures’. bError represents ±1 S.E. cError 

. represents ±2 S.E
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Table 10. Michaelis-Menten parameters for Spectrozyme TH hydrolysis and 

 

[5F-Hir[54-65](SO3
-)]O KM kCAT IC50,app

b

CDSO3-dependent thrombin inhibition parameters in the presence 

[5F]-Hir[54-65](SO3
-). 

(nM) (µM) -1) M) (s (n

0 1. c 31 .8 28 4 
8.6 
25.8 

7±0.2 .4±0 .0±0.
1.5±0.1 39.5±1.0 48.4

±
±0.6 
±1.2±0.1 43.3

±
0.8 46.8

±
0.6 

±51.6 1.3 0.1 46.0
±

1.3 50.2
±

0.6 
±103.6 1.5 0.1 52.2 1.2 57.8 0.8 

 
aKM and kCAT values of Spectrozyme TH substrate hydrolysi in in the presence of [5F]-

r[ ](SO - b

asured as 

s by thromb

Hi 54-65 3 ) were measured as described in ‘Experimental Procedures’. IC50,app values of 

CDSO3 inhibition of thrombin in the presence of [5F]-Hir[54-65](SO3
-) were me

described in ‘Experimental Procedures’. cError represents ± 2 S.E. 

  



www.manaraa.com

225 

Table 11. Inhibition of human α-thrombin with CDSO3 in the presence of exosite 

II ligands.a 

 

IC50,app (nM) 
Exosite II ligand [Ligand]O 

(µM) Measured Dixon-Webb 
Predicted 

Octasaccharide H8 0 28 ± 4b 28 
 0.255 112 ± 12 29 
 3.0 203 ± 10 35 
 26.3 414 ± 20 93 

Bovine Heparin 0 28 ± 2 29 
 4.2 44 ± 1 37 
 12.8 50 ± 2 53 
 25.0 67 ± 1 75 
 42.6 71 ± 2 108 

Enoxaparin 20.0 348 ± 10 113 
    

 
aInhibition of thrombin by CDSO3 in the presence of exosite II ligands was studied as described in 

‘Experimental Procedures’. bError represents ±2 S.E. 
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5.7 FIGURE LEGENDS 
Figure 51 Direct and indirect inhibition of factor Xa (A) and thrombin (B) by CDSO3. 

The inhibition of thrombin and factor Xa by CDSO3 in the presence (open triangles) and 

absence (closed triangles) of antithrombin as described under ‘Experimental Procedures’. 

Indirect inhibition of factor Xa with enoxaparin (closed circles) and fondaparinux (open 

diamonds) and that of thrombin with enoxaparin (closed circles) is shown for comparative 

purposes. Solid lines represent dose-response fits to the data to obtain values of IC50. 

 

Figure 52 Direct and indirect inhibition of factor IXa (A) and factor VIIa (B) by 

SDSO3. The inhibition of factor IXa and factor VIIa by SDSO3 in the presence (open 

triangles) and absence (closed triangles) of antithrombin as described in ‘Experimental 

Procedures’. Indirect inhibition of both enzymes with enoxaparin (closed circles) is shown 

for comparative purposes. Solid lines represent dose-response fits to the data to obtain 

IC50. 

 

Figure 53 Michaelis-Menten kinetics of Spectrozyme TH hydrolysis by thrombin in 

the presence of CDSO3. The initial rate of hydrolysis at various substrate concentrations 

was measured in pH 7.4 buffer as described in ‘Experimental Procedures’. The 

concentrations of CDSO3 chosen for study include 0 (◊), 10 (▲), 20 (○), 29 (♦) and 100 

nM ( ). Solid lines represent non-linear regressional fits to the data by the Michaelis-

Menten equation. 
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Figure 54 A) Influence of [5F]-Hir[54-65](SO3
-) on the hydrolysis of Spectrozyme TH 

by thrombin. The Michaelis-Menten kinetics of Spectrozyme TH hydrolysis by thrombin 

in the presence of 0 (□), 8.6 (♦), 25.8 (○), 51.6 (▲) and 103.6 nM (◊) [5F]-Hir[54-

65](SO3
-) was studied at pH 7.4 and 25 OC. Solid lines represents non-linear regressional 

fits to the data by Michaelis-Menten equation. B) Competitive effect of [5F]-Hir[54-

65](SO3
-) on the inhibition of thrombin by CDSO3. Thrombin inhibition by CDSO3 in the 

presence of [5F]-Hir[54-65](SO3
-) was determined spectrophotometrically through the 

Spectrozyme TH hydrolysis assay at pH 7.4 and 25 OC. Solid lines represent fits by the 

dose-response equation to obtain IC50,app, as described in ‘Experimental Procedures’. 

 

Figure 55. A) Competitive direct inhibition of thrombin by CDSO3 in the presence of 

heparin octasaccharide H8. The inhibition of thrombin by CDSO3 in the presence of H8 

was determined spectrophotometrically through the Spectrozyme TH hydrolysis assay at 

pH 7.4 and 25 OC. Solid lines represent fits by the dose-response equation to obtain 

IC50,app, as described in ‘Experimental Procedures’. The concentrations of H8 chosen for 

study include 0 (♦), 0.26 (∆), 3.0 (●) and 26.3 µM (□). B) Comparison of the predicted 

and experimentally measured IC50 values of CDSO3 inhibition of thrombin in the presence 

of H8 and bovine heparin. Open bars represent the measured values, while closed bars are 

the values predicted using Dixon-Webb equation II. Error bars show ±2 S.E. 
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Figure 51. 
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Figure 52. 
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Figure 53. 
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Figure 54.  
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Figure 55. 
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Chapter 6: Additional Biochemical Studies 
 

6.1 Introduction 

To-date, we have determined that our sulfated DHPs possess potent anticoagulant activity.  

They can be easily synthesized in a simple two-step chemo-enzymatic process from 

commercially available starting materials (4-hydroxycinnamic monomers) [212, chapter 3].  

Additionally, some information about oligomer chain length, intermonomeric linkage, 

molecular weight and % sulfation has been determined [212, chapter 3].  They exhibit 

similar potency to LMWHs in both APTT and PT [212, chapter 3].  All three DHPs exhibit 

nanomolar potency against thrombin and factor Xa in an antithrombin dependent and 

independent manner [212, chapter 3].  CDs and FDs appear to function better as direct 

inhibitors, while the AT dependent pathway appears to be detrimental to activity.  In 

contrast, the potency of SDs increases in the presence of AT, while it retains fairly potent 

direct inhibition property.  All three DHPs exhibit selective direct inhibition of thrombin 

and factor Xa over FIXa and FVIIa [chapter 5].  Interestingly, SDs is completely inactive 

as a FIXa and FVIIa direct inhibitor, but is able to activate AT and inhibit both proteases 

[chapter 4].  CDs was found to be a non-competitive, allosteric direct inhibitor of 

thrombin.  Even more exciting was that CDs mediates its inhibition through exosite II 

[chapter 5], a property not known to be present in any known direct thrombin inhibitor.  It 

is likely that FDs and SDs exhibit similar biochemical behavior, although this needs to be 

 233 
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rigorously demonstrated. These exciting results are the impetus for our continued interest 

in these novel compounds.  This chapter details the experiments we have performed to 

further elucidate the unique biochemical properties of DHPs.    

 

6.2 Molecular mechanism of action of CDs, FDs and SDs 

Several questions arise with respect to anticoagulant action of the sulfated DHPs: 

1.  What is the affinity of CDs, FDs, and SDs for thrombin, factor Xa, and antithrombin?  

2.  Where do they bind?  

3.   Is there a structural dependence in the extent of allosteric modulation induced by CDs, 

FDs and SDs? 

4.  What is the nature of the interaction (ionic or non-ionic) with antithrombin, thrombin 

and factor Xa?  

5.  Why does the presence of antithrombin reduce the potency of CDs and FDs (and 

enhance that of SDs)?  

6.  What is their kinetic mechanism of binding (one-step or multi-step)?   

7.  Are there any specific structure(s) in sulfated DHPs that recognize thrombin/factor Xa 

and antithrombin? If so, what the proportion of these specific structures in the 

preparation of these novel anticoagulants? 

8.  Do these molecules allosterically modulate binding of other ligands (exosite I/II ligands 

and Na+)?  

9.  Do these molecules inhibit thrombin in the clot-bound form? 

10. Can we enhance the potency of sulfated DHPs? 
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 We have only just begun to address and answer some of these questions.  The 

remainder of this chapter is focused on the results that we have collected pertaining to the 

various questions.  The studies that have been performed versus those that have not, does 

not necessarily reflect the importance of any one set of experiments over another, but 

rather, what we were able to do with the time and resources available.   

 

6.3 What is the affinity of CDs, FDs and SDs for antithrombin? 

We have previously used a fluorescence-based approach for deducing the antithrombin 

binding affinity of saccharides and organic ligands [190, 191, 193, 194]. Our approach 

relied on the change in fluorescence of an external probe TNS (λEM = 432 nm) on 

interaction of organic ligands with antithrombin.  In the current approach, we have used a 

more direct method of intrinsic tryptophan fluorescence change, which has been used 

previously to study AT:heparin interactions [243].   

  

6.3.1 Methods 

Antithrombin-DHP (or heparin) equilibrium binding titrations 

All experiments were conducted at 25º C, ionic strength 0.15, pH 7.4 in acrylic cuvettes.  

The buffer contains 20 mM sodium phosphate, 100 mM NaCl, 0.1 mM EDTA and 0.1% 

polyethylene glycol 8000.  The final concentration of antithrombin was 88 nM in the 

buffer above (final volume of 900 µl).  DHPs (or other ligands) were added in 1 µl 

increments.  DHPs were prepared as described earlier [212].  Fondaparinux 

(GlaxcoSmithKline) and heparin (Sigma) were purchased and used as obtained.  The 
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samples were excited at λEX = 280 nm  and the interaction was monitored at λEX = 340 nm 

[243].    

 

6.3.2 Results 

Antithrombin-DHP (or heparin) equilibrium binding titrations 

 

Table 12.   Dissociation constants for DHPs and heparins binding to AT. KD values are 

  an average of three titrations experiments.   

 

AT ligand KD (nM) ± std. dev.

 
Heparin 

 
1052 ± 122 

Fondaparinux 65 ± 10 

CDs 382 ± 13 

FDs 2052 ± 157 

SDs 2580 ± 370 
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Figure 56.  Antithrombin-fondaparinux equilibrium binding titration. 
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Figure 57.  Antithrombin-heparin equilibrium binding titrations.   
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Figure 58.  Antithrombin-DHP equilibrium binding titrations (CDs, FDs and SDs). 
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6.3.3 Discussion 

Antithrombin-DHP (or heparin) equilibrium binding titrations 

Heparin and fondaparinux binding to antithrombin is well characterized [211].   

Fondaparinux binds to the pentasaccharide-binding site (PBS) on AT.  Heparin, which 

contains the pentasaccharide sequence within its long carbohydrate chain, binds to the PBS 

as well as the adjacent extended heparin binding sequence (EHBS).  Our KD values for 

heparin (~1 µM) and fondaparinux (65 nM) are consistent with previously published data 

[211, 245], indicating that our experimental system is working properly.  When 
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saccharides bind AT, there is generally a 30-35% increase in fluorescent signal (figures 56 

and 57).  When our DHPs bind to AT, there is a dose dependent decrease fluorescence that 

drops to baseline fluorescence.  One possible explanation for this behavior is that DHPs 

induce a conformational change in the inhibitor, although it is appears to be different from 

that induced by saccharide ligands. This hypothesis requires a rigorous test.  

 Prior attempts to make small molecule antithrombin activators yielded AT KD 

values of ~20-80 µM, which exhibited marginal activation and anticoagulant potency [190-

192].  Our sulfated DHPs exhibit AT KD values in the range of 0.38-2.5 µM and are potent 

anticoagulants.  These AT KD vales are superior or equivalent to that of heparin and bind 

AT ~6-40-fold less than fondaparinux.  This is a significant result because no non-

carbohydrate molecules have been designed that bind as tightly to AT as sulfated DHPs.   

 

6.4 Where do sulfated DHPs bind on antithrombin?  

SDs is more potent in the presence of antithrombin and appears to bind and activate 

antithrombin (chapter 3, chapter 5, [212]).  CDs and FDs are less potent in the presence of 

antihrombin indicating that these molecules bind AT in a manner that less or 

nonproductive for anticoagulation (chapter 3, chapter 5, [212]).  Based on these findings, it 

is important to determine where these DHPs bind on antithrombin. By performing 

competitive binding studies with full-length heparin, heparin pentasaccharide and (-) 

epicatechin sulfate (-ECS), the DHP:AT binding site can be determined.  Full-length 

heparin binds in the PBS and the EHBS, fondaparinux binds exclusively in the PBS, while 

(-) epicatechin sulfate bind in the EHBS [191]. Competitive binding studies with 
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antithrombin will also utilize the intrinsic tryptophan fluorescence-based approach as 

discussed above [243].   

 

6.4.1 Methods 

Antithrombin competitive binding studies 

Binding experiments were conducted at 25º C, ionic strength 0.15, pH 7.4 in acrylic 

cuvettes.  The buffer contains 20 mM sodium phosphate, 100 mM NaCl, 0.1 mM EDTA 

and 0.1% polyethylene glycol 8000.  The AT competitor along with antithrombin (final 

concentration 88 nM) are coincubated for 2 minutes in the buffer described above (final 

volume of 900 µl).  DHPs were added in 1 µl increments.  The samples were excited at λEX 

= 280 nm and λEX = 340 nm [243].  The competitors used were heparin (Sigma), 

fondaparinux and (-)-epicatechin sulfate.  The KD value reported for (-)epicatechin sulfate 

– antithrombin interaction is ~16 µM [191]. 
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6.4.2 Results 

Antithrombin-DHP competitive binding studies 

Table 13. Dissociation constants for CDs binding to antithrombin in the presence of  

  various competitors.   

 

Competitor Concentration KD (nM) ± std. dev 
Control  382 ± 13 

Heparin (Sigma) 1 µM 1050 ± 45 

 2 µM 1460 ± 226 

 8 µM 2540 ± 516 

 16 µM 3223 ± 436 

Fondaparinux 64 nM 637 ± 99 

 128 nM 819 ± 108 

 321 nM 935 ± 67 

(-) Epicatechin sulfate 16 µM 503 ± 11 

 166 µM 653 ± 54 

 332 µM 851 ± 9 
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Figure 59.  Competitive binding between heparin and CDs for antithrombin.  This is a 

representative figure for all the antithrombin-DHP competitive binding experiments.   
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Table 14. Dissociation constants for FDs binding to antithrombin in the presence of  

  various competitors. 

 

Competitor Concentration KD (nM) ± std. dev 
Control  2052 ± 1157 

Heparin (Sigma) 0.5 µM 4214 ± 659 

 1 µM 4339 ± 267 

 2 µM 5140 ± 162 

 8 µM 7219 ± 813 

Fondaparinux 64 nM 3378 ± 217 

 128 nM 4121 ± 96 

 321 nM 5107 ± 182 

(-) Epicatechin sulfate 16 µM 2320 ± 56 

 67 µM 2216 ± 209 

 166 µM 2383 ± 65 

 332 µM 2086 ± 57 
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Table 15. Dissociation constants for SDs binding to antithrombin in the presence of  

  various competitors. 

 

Competitor Concentration KD (nM) ± std. dev 
Control  2579 ± 370 

Heparin (Sigma) 0.5 µM 5376 ± 218 

 1 µM 5628 ± 535 

 2 µM 7451 ± 671 

 8 µM 9089 ± 84 

Fondaparinux 64 nM 4186 ± 233 

 128 nM 5980 ± 795 

 321 nM 7424 ± 400 

(-) Epicatechin sulfate 16 µM 3071 ± 170 

 67 µM 3815 ± 318 

 166 µM 4348 ± 309 

 332 µM 4579 ± 492 
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6.4.3 Discussion 

The presence of full-length heparin increased the AT KD values for all three DHPs.  

Therefore, all three DHPs bind to all or some portion of the heparin bind site on AT (PBS 

+ EHBS).  To refine the location of DHP binding, fondaparinux and -ECS were used.  For 

all three DHPs, fondaparinux increased the AT:DHP KD in a dose-dependent manner.  

Therefore, all three DHPs bind in the pentasaccharide-bind site of AT (PBS).  When 

competitive binding studies were done in the presence of -ECS, both the CDs and SDs AT 

KD values increased in a dose dependent manner, indicating that these molecules also bind 

the EHBS.  Interestingly, even at 20 times the KD of (-)-ECS – antithrombin interaction 

(332 µM), no significant increase in the KD of FDs:AT interaction was observed.  This 

result appears to suggest that FDs does not utilize the EHBS and is selective for the PBS, 

although this conclusion needs to be rigorously established using additional EHBS and 

PBS binding site competitors.  Overall, these results are exciting because prior attempts to 

make non-carbohydrate anticoagulants that bound AT yielded weak activators, which only 

bound to the EHBS [190-192].  Based on these competitive bind studies, CDs appears to 

bind in a manner similar to full-length heparin but with tighter binding (~2.5-fold tighter), 

while SDs also appears to bind in a manner similar to full-length heparin but with slightly 

weaker binding (~2.5-fold weaker).  FDs appears to bind in a selective manner similar to 

fondaparinux, but ~40-fold weaker.  It is interesting to note that FDs binds AT only ~2-

fold weaker than heparin.   
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6.5 What is the nature of the antithrombin-DHP interaction (ionic or non-ionic)?  

The hydrophobic nature of the backbone of our sulfated DHPs suggests a strong possibility 

of significant non-ionic interactions with antithrombin. This is tested by measuring the KD 

of DHP:AT interaction at several ionic strengths. As the ionic strength of the solution 

increases, it becomes more difficult for the DHP and AT to form ionic interactions, which 

will cause an increase in the KD value. The extent to which the KD values increase from 

one ionic strength to the next depends on the relative contributions of ionic and non-ionic 

binding.  Equation III was found to be useful for segregating the protein–heparin 

interaction into ionic and non-ionic components.  Therefore, equation III, will be used for 

our sulfated DHPs [194, 191, 237, 245]. In the equation below, the KD,OBS is the observed 

KD value, the KD,NIO is the nonionic KD values, Ψ is a screening constant and γ is the 

number of ion pair interactions.  Although this approach is likely to succeed, it is important 

to remember that sulfated DHPs may not resemble an infinite chain of negative charges. 

To date, only the ionic/non-ionic interaction experiments have been done between AT and 

the DHPs.   

 

Figure 60.  Equation III 

 
NaKK NIODOBSD ].log[loglog ,,

+Ψ+= γ NaKK NIODOBSD ].log[loglog ,,
+Ψ+= γ NaKK NIODOBSD ].log[loglog ,,
+Ψ+= γ NaKK NIODOBSD ].log[loglog ,,
+Ψ+= γ
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6.5.1 Methods for salt-dependent AT-DHP equilibrium binding titrations 

Titrations were conducted at 25º C (298 K), pH 7.4 in acrylic cuvettes.  The buffer 

contains 20 mM sodium phosphate, varying concentrations of NaCl, 0.1 mM EDTA and 

0.1% polyethylene glycol 8000.  Four NaCl concentrations were tested (21 mM, 100 mM, 

200 mM and 500 mM).  The final concentration of antithrombin was 88 nM in the buffer 

above (final volume of 900 µl).  DHPs (or other ligands) were added in 1 µl increments.  

The samples were excited at λEX = 280 nm and λEX = 340 nm [243].  Future studies will 

also use the same buffers described above, but at pH= 6.0.  The equations provided on each 

salt dependence graph (figures 65-67) correlate to equation III above.  The slope 

corresponds to Ψγ and the Y-intercept value corresponds to the log KD, NIO.  Using those 

values, one can calculate the ∆GºIonic and ∆GºNon-ionic (equations IV and V, respectively), 

which quantifies that nature of the interaction between protein and ligand (ionic vs. non-

ionic for the DHP:AT interaction).  

 

Figure 61.  Equations IV and V, where R=1.987 and T= temperature in Kelvin 

    

   ∆GºIonic = -2.303*R*T*Ψγ*log [Na+]  IV  

    

   ∆GºNon-ionic = -2.303*R*T*log KD, NIO V 
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6.5.2 Results for the salt-dependent AT-DHP equilibrium binding titrations 

 

Table 16. Variables for equation III derived from salt-dependent AT-DHP studies 

 

DHP Slope (Ψγ) log KD, NIO γ KD, NIO (µM) 
 

CDs 
 

1.0973 
 

-5.2583 
 

1.3 
 

5.5 

FDs 0.6492 -4.9938 0.81 10.1 

SDs 0.7893 -4.8337 0.98 14.6 

 

 

 

Table 17. The relative contributions of ionic and non-ionic interactions in AT-DHP  

  binding.   

 

DHP ∆GºIonic (kcal/mol) ∆GºNon-ionic (kcal/mol) % Non-ionic contribution
 

CDs 
 

1.29 
 

7.17 
 

84% 

FDs 0.77 6.80 89% 

SDs 0.93 6.59 87% 
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Figure 62.  Salt-dependent AT-CDs equilibrium binding titrations 
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Figure 63.  Salt-dependent AT-FDs equilibrium binding titrations 

[FDs], nM

0 2000 4000 6000 8000 10000 12000 14000 16000

dF
 / 

Fo

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

56 mM [Na+]
135 mM [Na+]
235 mM [Na+]
535 mM [Na+]

 

 

 

 

 

 

 

  



www.manaraa.com

252 

Figure 64.  Salt-dependent AT-SDs equilibrium binding titrations 
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Figure 65.  The dependence of AT:CDs on salt concentration (Standard error is shown) 
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Figure 66.  The dependence of AT:FDs on salt concentration (Standard error is shown) 
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Figure 67.  The dependence of AT:SDs on salt concentration (Standard error is shown) 
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6.5.3 Discussion  

The nature of the interaction between the sulfated DHPs and AT was predominantly non-

ionic.  {Discuss the value of KD,obs as a function of salt concentration.} The relative 

contribution of non-ionic interactions to total binding was 84-89%.  This is a n important 

result that differentiates sulfated DHPs from all known antithrombin binding ligands.  

Heparins bind to AT in a manner that is primarily ionic [209].  However, our sulfated 

DHPs, which bind in a manner similar to heparin, bind in predominantly non-ionic fashion.  

This data dispels the notion that antithrombin ligands must be highly charged to effectively 

recognize the PBS and that non-ionic interactions are not important for antithrombin 

binding.  DHPs represent a new strategy of designing AT binding molecules that are less 

negatively charged and more hydrophobic, which could be useful in the design of orally 

active anticoagulants. 
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APPENDIX A 
 

Abbreviations used: AT, antithrombin; APTT, activated partial thromboplastin time; CA, 

caffeic acid; CD, dehydropolymer of caffeic acid; CDAC, acetylated dehydropolymer of 

caffeic acid; CDS, sulfated dehydropolymer of caffeic acid; CDSO3, sulfated 

dehydropolymer of caffeic acid; (+)-CS, (+)-catechin sulfate; DHP, dehydrogenation 

polymer; DTI, direct thrombin inhibitor; FA, ferulic acid; FD, dehydropolymer of ferulic 

acid; FDAC, acetylated dehydropolymer of ferulic acid; FDS, sulfated dehydropolymer of 

ferulic acid; FDSO3, sulfated dehydropolymer of ferulic acid; [5F]-Hir[54-65](SO3
-), 

Tyr63-sulfated hirudin-(54-65) labeled with fluorescein; GAG, glycosaminoglycan; H8, 

heparin octasaccharide; HRP, horseradish peroxidase; IC50, concentration of inhibitor that 

results in 50% inhibition; LMWH, low-molecular-weight heparin; MES, 2-(N-

morpholino)ethanesulfonic acid sodium; MN, number average molecular weights;MW, 

weight average molecular weights; NPGB, p-nitrophenyl-p’-guanidinobenzoate; PABA, p-

aminobenzamidine; PEG, polyethylene glycol; PT, prothrombin time; SA, sapinic acid; 

SD, dehydropolymer of sapinic acid; SDAC, acetylated dehydropolymer of sapinic acid; 

SDS, sulfated dehydropolymer of sapinic acid; SDSO3, sulfated dehydropolymer of sinapic 

acid; SEC, size-exclusion chromatography; THF, tetrahydrofuran 
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